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1 Introduction

The goal of this article is to help ease understanding of quantum computing (QC)
by computing professionals (for instance, if you are a programmer, or a machine
learning engineer or a data scientist). This draws directly from the experience of the
first author, who began this journey not too long ago as an AI/ML professional, but
had the help of his colleague (the second author, Quantum Computing professional)
to smooth the way.

Quantum computing can be a fairly challenging subject to understand even for
people with a background in computing. A big reason for this is that it requires
coming to grips with

� ideas from quantum physics that are at odds with our day to day experience
in the world

� how these ideas are represented mathematically

� how these mathematical notions can be used to carry out meaningful compu-
tation.

However, it turns out that there is a way to explain the fundamental ideas from
quantum computing from a purely ”logical” perspective - this is the approach we
take in this article. This abstracts away the physics behind QC completely, and
looks at it as “just” another model of computation 1.

1In this article we adopt a hybrid approach of citing references because of the intended mode
of dissemination as an online article. For well known notions from computing, mathematics or
quantum physics, we just use an in text hyperlink to an online resource (often Wikipedia). For
more recent or research topics, we include proper citations.
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Examples of models of computation are Turing machines (the most well known)
lambda calculus, combinatory logic or even your favorite programming language
(with some caveats not important for this article). For our purposes, a model of
computation is given by set of symbols, and a set of rules for manipulating those
symbols to carry out meaningful computations

As an example, in a Turing machine, the symbols are the symbols on a tape, and
the rules define how the machine moves between different states after inspecting the
current symbol. In a programming language, the symbols constitute the language
itself, and the rules define how a program is executed by the interpreter or the
machine.

When presented from this ”logical” or model-of-computation perspective, un-
derstanding QC still poses some challenges. But we believe that this is manageable
to do in 10 to 15 pages. Of course, to understand how QC is implemented using
quantum computers, and to design effective quantum algorithms, understanding the
physics behind is necessary to a certain extent. We believe that the logical perspec-
tive helps in understanding the full physics based picture, and also motivates the
effort required in understanding it.

In the following sections, we first define what the set of symbols are in the
context of QC, and how those symbols are manipulated to carry out computations.
We then describe some quantum algorithms in that context at a high level and
end with how the reader can continue their efforts in understanding and mastering
quantum computing.

1.1 Formal Models of Quantum Computation

For the interested reader, there are well established formal models of quantum com-
puting like quantum logic gates [2] and quantum Turing machines [1], and newer
ones such with much stronger connection to formal logic such as a quantum lambda
calculus [7] and quantum typed lambda calculus [6]. In this article we present a min-
imal introduction to the model corresponding to quantum logic gates while leaving
out the physics completely.

2 Quantum states

The ‘symbolic’ part of QC is represented by qubits - which are to QC what bits
are to classical computing. Qubits in turn are defined by quantum states - and a
quantum state is represented as a weighted sum of basis states. To summarize

Symbolic part of QC = qubits →defined by quantum states →defined by sum
of basis states
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2.1 Basis States

Basis states are the fundamental ’symbolic’ units of quantum computing. Each basis
state is represented by a binary string enclosed within |·⟩ which is called a ket. A
related notation is ⟨·| - this is called the bra which we discuss in more detail below.
Together they are called the bra-ket notation.

Examples: Basis states

� |0⟩

� |1⟩

� |010010⟩

� |001⟩

Note that the number of basis states with binary strings of length n is 2n (cor-
responding to the number of binary strings of length n). The set of all basis states
of the same length n are representations of the orthonormal basis vectors in a 2n

dimensional vector space. With this interpretation, |·⟩ denotes a column vector and
⟨·| denotes a row vector. Here are some examples:

Example: Basis states / kets as column vectors

|001⟩ is a canonical unit column vector in a 23 dimensional space. So
|001⟩ is the column vector of length 8, with all 0s except for row 1 (be-
cause 001 is binary representation of the integer 1), with the row/column
numbering starting at 0 

0
1
0
0
0
0
0
0


(1)

The above generalises to arbitrary dimension n (instead of 3) in the
obvious way.
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Example: Bras as row vectors

⟨001| is a canonical unit row vector in a 23 dimensional space. So ⟨001| is
the row vector of length 8 with all 0s except for column 1 (because 001 is
binary representation of the integer 1), with the row/column numbering
starting at 0 [

0 1 0 0 0 0 0 0
]

(2)

The above generalises to arbitrary dimension n (instead of 3) in the
obvious way.

Those familiar with standard vector notation may be annoyed at first with the
bra-ket notation, but its utility becomes clearer as one works with it - you might
even start using it outside Quantum computing!

2.2 From Basis States to Quantum States

A quantum state is a weighted sum of basis states of the same dimension - that is,
it is a vector in the space spanned by a set of basis vectors.

Examples: Quantum States

1. |0⟩

2. i 1√
2
|01⟩+ 1√

2
|11⟩ (‘i’ is the imaginary number)

3. i1
2
|010010⟩+i1

2
|110010⟩+1

2
|011010⟩+1

2
|010011⟩ (‘i’ is the imaginary

number)

The weights need to satisfy the following requirements (which the examples sat-
isfy, and you should check):

1. The weights are complex numbers.

2. The sum of the square of the modulus of the weights has to sum to 1.

The second property will play a big role when reading off the results of a quantum
computation. A quantum state like i 1√

2
|01⟩+ 1√

2
|11⟩ is said to be in a superposition

of the basis states |01⟩ and |11⟩.

If you are wondering about the ’why’ of it all at this point, we ask
you to remember what we said at the beginning of this article: all this
follows from theory of quantum physics and the experimental results
which support it. In this article we are ignoring the physics, and just
presenting it as a ’logical system’ of symbols and rules for manipulating.
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2.3 A Notational Simplification

For convenience, a basis state |x⟩ is written as |nx⟩, where nx is the number corre-
sponding to the binary string x.

Examples: Notational simplificiation

1. |000001⟩ is denoted by |1⟩ (the decimal representation of 000001),

2. |100001⟩ is denoted by |33⟩ (the decimal representation of 100001)

3. |01⟩ is (also) denoted by |1⟩ (the decimal representation of 01)

That is, we replace the binary string by its corresponding decimal representation.
Note that the (1) and (3) above have the same denotation. This means that when
we use this notation, it must be clear from the context which set of basis states we
are using. Using this notation, the example quantum states above are written as:

Examples: Quantum state - simplified notation

1. |0⟩

2. i 1√
2
|1⟩+ 1√

2
|3⟩

3. i1
2
|18⟩+ i1

2
|50⟩+ 1

2
|26⟩+ 1

2
|19⟩

2.4 Dot and Outer Products

In the following we define the dot and outer products for the basis states, and then
quantum states in general. These are vital notions for defining quantum computation
later on.

2.4.1 Dot and Outer Products for Basis States

The dot product |y⟩ · |x⟩ between two basis states of the same dimension is written
as ⟨x|y⟩.

Note that since |x⟩ and |y⟩ are orthonormal basis vectors, ⟨x|y⟩ = 1 if
x = y (i.e. the same binary string) and ⟨x|y⟩ = 0 if x ̸= y (i.e. different
binary strings).

Similarly, the outer product is written as |x⟩⟨y|. As per the definition, the outer
product of two vectors in an m dimensional space gives an m×m matrix.
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In particular because |x⟩ and ⟨y| are unit vectors, and interpreting x and
y as binary representation of numbers, in the n × n matrix |x⟩⟨y|, the
entry in row i and column j |x⟩⟨y|i,j = 1 if i = x and j = y, and otherwise
|x⟩⟨y|i,j = 0. Here we are indexing the matrix rows and columns from
0 to m − 1. This follows directly from the definition of outer products.
For example, if x = |1000⟩ and y = ⟨0001|, then i = 8 and j = 1, and in
the 4× 4 matrix |x⟩⟨y|, the entry |x⟩⟨y|8,1 = 1, and all the other entries
are 0.

As we are working with vectors, the products of these follow the usual rules for
linear algebra. In particular,

(|w⟩⟨x|) |y⟩ = |w⟩ (⟨x|y⟩)

The above has the interesting consequence that for basis states, the dot product
⟨x|y⟩ can be thought of as a selection tool.

if x = y then (|w⟩⟨x|)|y⟩ = |w⟩(⟨x|y⟩) = |w⟩1 = |w⟩ and if x ̸= y,
(|w⟩⟨x|)|y⟩ = |w⟩(⟨x|y⟩) = |w⟩0 = 0 (where 0 is the zero vector).

We will use the above fact to define operators over quantum states later on.

2.4.2 Dot and Outer Products for Quantum States

Dot and outer products between quantum states is extended to quantum states in
the usual way by distributing the dot product of the basis states that make up the
quantum states. However, now we also need to deal with the weights of each basis
state making up the quantum state.

For dot products, we take the complex conjugate of the weight of the second
vector and then do a complex multiplication of the weights. An example will make
it clear. For instance, say,

ϕ = i
1√
2
|1⟩+ 1√

2
|3⟩

ψ = i
1√
3
|1⟩+ 1√

3
|2⟩+ 1√

3
|3⟩

then

⟨ϕ|ψ⟩ =(−i) 1√
2
· i 1√

3
⟨1|1⟩+ (−i) 1√

2
· i 1√

3
⟨1|2⟩+ (−i) 1√

2
· 1√

3
⟨1|3⟩

+
1√
2
· i 1√

3
⟨3|1⟩+ 1√

2
· i 1√

3
⟨3|2⟩+ 1√

2
· i 1√

3
⟨3|3⟩

=
1√
6
+

1√
6
=

√
2√
3
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First note that all the terms ⟨i|j⟩ where i ̸= j disappear as per the discussion
above. So, in the second line, the first 1√

6
comes from the weights for the basis

state |1⟩ in the two terms: i 1√
2
. The product after taking the complex conjugate is

i 1√
3
× (−i 1√

2
) = 1√

6
. The second

√
6 comes from the weights for the basis state |3⟩

(not shown in the first line) and the product in this case is i 1√
2
× 1√

2
=

√
2√
3

The outer product is defined in a similar distributive manner:

|ψ⟩⟨ϕ| =i 1√
3
· (−i) 1√

2
|1⟩⟨1|+ i

1√
3
· 1√

2
|1⟩⟨3|

+
1√
3
· (−i) 1√

2
|2⟩⟨1|+ 1√

3
· 1√

2
|2⟩⟨3|

+
1√
3
· (−i) 1√

2
|3⟩⟨1|+ 1√

3
· 1√

2
|3⟩⟨3|

=
1√
6
|1⟩⟨1|+ i

1√
6
|1⟩⟨3|

− i
1√
6
|2⟩⟨1|+ 1√

6
|2⟩⟨3|

− i
1√
6
|3⟩⟨1|+ 1√

6
|3⟩⟨3|

2.5 Qubits

Qubit refers to the length of the basis states that comprise a quantum state.

Examples: Qubits

� each of the quantum states |0⟩, |1⟩ consists of 1 qubit,

� each of the quantum states |10⟩, |11⟩ consists of 2 qubits,

� the quantum state i1
2
|010010⟩+i1

2
|110010⟩+ 1

2
|011010⟩+ 1

2
|010011⟩

consists of 6 qubits.

This concludes our presentation of the ’symbol’ part of quantum computation.
We will now look at how these symbols are used for computing useful things.

3 Computation in Quantum Computing

In this section we look at how qubits are manipulated for computation and how the
corresponding results are read off for output to human users. As we will see, the
output of a given run of a quantum computation is a set of classical bits like the
ones we are used to in normal computation. However, for multiple runs for the same
input, the outputs are probabilistic - this is one of the unique aspects of QC.
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3.1 Quantum Gates

Quantum gates or quantum logic gates or quantum operators are the main
computational units in quantum computing. They transform one quantum state
into another. A quantum operator O that can be applied to an n-qubit state is
written as a weighted, double sum over the set of matrices formed from the outer
product of the basis states in 2n dimensions:

O =
2n−1∑
i=0

2n−1∑
j=0

ai,j|i⟩⟨j|

Recalling the selection tool idea from Section 2.4.1, the O is a matrix or a linear
operator in the space defined by the basis states, and the sum on the right is merely
setting Oi,j to ai,j. What makes two quantum operators distinct from each other is
having different values for ai,j. Note that the weights ai,j are complex valued and
can be 0.

3.1.1 Some Commonly Used Quantum Gates

Here are some examples of commonly used quantum logic gates. It is worth working
out the operation of the gates on single qubits using the selection tool idea that
was mentioned above (this should be trivial - but we will show what these do below
anyway).
Identity Gate: Denoted by I, and defined as

I = |0⟩⟨0|+ |1⟩⟨1|

Not Gate: Denoted by X and defined as

X = |0⟩⟨1|+ |1⟩⟨0|

Hadamard Transformation: Denoted by H, this is a commonly used gate that puts
a single qubit into a superposition of states. This is defined by

H =
1√
2
(|0⟩⟨0|+ |1⟩⟨0|+ |0⟩⟨1| − |1⟩⟨1|)

Controlled-NOT gate: Denoted by Cnot it is a commonly used gate and it operates
on two qubits. This is defined by:

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

3.2 Quantum Gate Computations

Given a quantum state ψ =
∑2n−1

k=0 bk|k⟩ (where some of the bk can be 0), O(ψ) is
computed in two steps.
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3.2.1 Step One

The first step in computing O(ψ) is computing Oψ, the matrix product of O and
ψ. It is computed in the usual manner:

Oψ =
2n−1∑
i=0

2n−1∑
j=0

2n−1∑
k=0

(
ai,j|i⟩⟨j|

) (
bk|k⟩

)
From the discussion in Section 2.4.1, each term in the above sum can be simplified

as follows(
ai,j|i⟩⟨j|

)
bk|k⟩ = ai,jbk

(
|i⟩⟨j|

)
|k⟩ = ai,jbk|i⟩

(
⟨j|k⟩

)
= ai,jbk|i⟩δj,k

where δj,k is the Kroneckar-delta function. So all the terms in the triple sum
disappear out unless j = k, and if j = k the vector part of the term is just |i⟩. So
the first step of application of the operator O(ψ) reduces to:

Oψ =
2n−1∑
i=0

2n−1∑
k=0

ai,kbk|i⟩ =
2n−1∑
i=0

|i⟩
2n−1∑
k=0

ai,kbk

We can simplify it even further, and drop terms where either ai,k or bi,k is 0:

Oψ =
2n−1∑
i=0

|i⟩
∑

ai,k ̸=0,bk ̸=0

ai,kbk

So we get (unsurprisingly) an expression for Oψ as a weighted sum of basis states
with each basis state |i⟩ having weight

∑
ai,k ̸=0,bk ̸=0 ai,kbk.

3.2.2 Step Two

Now recall from section 2.2 that the square of the modulus of the weights for a
quantum state needs to be normalized. So we need a factor of 1/AO,ψ for Oψ to be
a valid quantum state, where

AO,ψ =

√√√√√∑
i

∣∣∣∣∣∣
∑

ai,k ̸=0,bk ̸=0

bkai,k

∣∣∣∣∣∣
2

Here |.| is the modulus of a complex number So now we have the second step of
computing O(ψ), which is the normalisation by AO,ψ. This gives us our final defini-
tion:

O(ψ) =
2n−1∑
i=0

|i⟩
∑

ai,k ̸=0,bk ̸=0 bkai,k

AO,q
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3.2.3 Computing With Some Commonly Used Quantum Gates

Here we show what the gates mentioned in section 3.1.1 compute:
Identity Gate: Recall that I = |0⟩⟨0| + |1⟩⟨1|. This leaves a quantum basis state
unchanged

I|0⟩ = |0⟩
I|1⟩ = |1⟩

Not Gate: Recall that X = |0⟩⟨1|+ |1⟩⟨0|. It flips a basis state

X|0⟩ = |1⟩
X|1⟩ = |0⟩

Hadamard Transformation: Recall that

H =
1√
2
(|0⟩⟨0|+ |1⟩⟨0|+ |0⟩⟨1| − |1⟩⟨1|)

This transforms single qubits in the following ways:

H|0⟩ = 1√
2
(|0⟩+ |1⟩)

and

H|1⟩ = 1√
2
(|0⟩ − |1⟩)

So this puts the input state into a uniform superposition of the basis states.
Controlled-NOT gate: Denoted by Cnot, it is a commonly used gate, and it

operates on two qubits. This is defined by:

Cnot = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

This changes the two qubits in the following way:

Cnot|00⟩ = |00⟩
Cnot|01⟩ = |01⟩
Cnot|10⟩ = |11⟩
Cnot|11⟩ = |10⟩

You can see why this is called a controlled-not: if the first qubit is 0, then the
second qubit is passed unchanged - however if the first qubit is 1, the second qubit
is flipped. This is gate is like a not gate, which is activated based on the value of
the first qubit.
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3.2.4 Quantum Gates Are Unitary

We now discuss a very important property every quantum gate O needs to satisfy.
So far we have taken this into account implicitly. This property is that O has to be
unitary, meaning that OO† = O†O = I where O† is the conjugate transpose of O.
This in turn means O has the following properties

1. |Oψ| = |ψ| i.e. it preserves length.

2. O is invertible - that is if Oψ = ϕ, then we can get back ψ = Aϕ (A is trivially
O†).

Property 1 follows from the definition of length of vectors:

|ψ| =
√

⟨ψ|ψ⟩ =
√
ψ†ψ

For a unitary matrix this becomes

|Oψ| =
√

⟨Oψ|Oψ⟩ = (Oψ)†(Oψ) = ψ†O†Oψ = ψ†Iψ = ψ†ψ

The need for quantum gates to be unitary follows from quantum mechanics
directly and is a consequence of the requirement that the probabilities of the different
quantum states need to add up to one, as described in the next section.

3.3 Reading Off Quantum States

The nature of quantum physics entails that we can never directly access the Quan-
tum states. In particular, we have to perform a special operation on a quantum
state and at that point we get probabilistic readout. Remember that each quantum
state ψ is a superposition of the set of n-qubit basis states:

ψ =
2n−1∑
k=0

bk|k⟩

When a quantum state is read off, or measured, the output is one of the basis
states with non-zero weight bk chosen probabilistically. The probability of observing
|k⟩ is |bk|2 - the numbers work out because the sum of square of the modulus of the
weights of a quantum state are required to sum to 1. Finally, one observes the basis
state |k⟩, what they ’see’ is the binary string for k.
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Examples: Measuring quantum states

1. Measuring |0⟩ one observes the bit 0 deterministically

2. Measuring i 1√
2
|1⟩+ 1√

2
|3⟩ one observes 01 and 11 with probability

1/2 each

3. Measuring i1
2
|18⟩ + i1

2
|50⟩ + 1

2
|26⟩ + 1

2
|19⟩ one observes the bit

strings 010010, 110010, 011010 and 010011, each with probability
1/4.

Note that while in the examples the probabilities are uniform - but it is not
necessarily so.

3.4 Tensor Products

We now need to talk about tensor products, which are a type of operations in linear
algebra. The way we combine m-qubit vectors and n-qubit vectors to get a m+ n-
qubit vector. They are also the way we combine quantum gates to form the quantum
circuits that define quantum algorithms.

3.4.1 Tensor Products of Quantum States

We will start with an example with 2 qubits: ψ = a1|0⟩+a2|1⟩ and ϕ = b1|0⟩+b2|1⟩.
The tensor product ψ ⊗ ϕ is defined as:

ψ ⊗ ϕ = a1b1|0⟩ ⊗ |0⟩+ a1b2|0⟩ ⊗ |1⟩+ a2b1|1⟩ ⊗ |0⟩+ a2b2|1⟩ ⊗ |1⟩
= a1b1|00⟩+ a1b2|01⟩+ a2b1|10⟩+ a2b2|11⟩

That is, in a tensor product, the basis elements defining the two vectors dis-
tributes. Also note that 2-qubit basis states like |00⟩ are just tensor product of
1-qubit basis states |0⟩ ⊗ |0⟩. So we have been using tensor products, but just did
not know about it.

In terms of the more traditional column vector representation, the tensor product
|0⟩ ⊗ |0⟩ = |00⟩ is just a different way of writing

(0, 1)T ⊗ (0, 1)T = (0, 0, 0, 1)T

where T is the transpose. This operation multiplies each coordinate of the first
one by the second one (so a scalar × a vector) and then stacks them on top of each
other. The really cool thing here is that the bra-ket notation makes it very easy to
work out what the tensor product should be.

12



This generalizes to tensor products of m-qubit and n-qubit states in the obvious
way to give us m + n-qubit states. Make special note of the following, which often
trips up newcomers:

m-qubits are actually elements of a 2m dimensional vector space. So
the tensor product of m-qubit and n-qubits gives us elements of 2m+n

dimensional vector-space!

The general definition of tensor products can be found here.

3.4.2 Tensor Products of Quantum Logic Gates

Tensor products of quantum logic gates have a simple definition as well - you simply
concatenate the strings in the bras and kets. Here is simple example. Say Xsimple =
|1⟩⟨0| - then recalling that X = |0⟩⟨1|+ |1⟩⟨0|, we have

X ⊗Xsimple = |01⟩⟨10|+ |11⟩⟨00|

So we concatenate the 1 in the definition of Xsimple to the first sub-term of each
outer product in the definition of X and the 0 in the definition of Xsimple to the
outer product of each sub-term in the definition of X.

Taking a more complex example, recalling that

H =
1√
2
(|0⟩⟨0|+ |1⟩⟨0|+ |0⟩⟨1| − |1⟩⟨1|)

we have,

H ⊗X =
1√
2

(
|00⟩⟨01|+ |10⟩⟨01|+ |00⟩⟨11| − |10⟩⟨11|

+ |01⟩⟨00|+ |11⟩⟨00|+ |01⟩⟨10| − |11⟩⟨10|
)

(3)

In terms of the more traditional matrix of numbers representation, the tensor
product H⊗X replaces each component Hi,j with the matrix Hi,j×X (i.e. a scalar
× a matrix). So the tensor product of an m ×m matrix with an n × n matrix is
an mn × mn matrix. Again, the beauty of the bra-ket notation is that it makes
pen-and-paper calculation of tensor products a straighforward exercise.

4 Deutsch–Jozsa Algorithm: Your First Quan-

tum Algorithm

In this section we present one of the simplest quantum algorithms that shows their
advantage over classical algorithms. While the problem is somewhat artificial, it
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takes the quantum algorithm constant time (a single step in fact), but it takes a
classical algorithm time exponential in the size of the input. In the following section
we discuss next steps the reader might take in continuing their journey

4.1 The Problem

The problem that is solved by the Deutsch–Jozsa algorithm is the following. We are
given a function f : {0, 1}n → {0, 1} - i.e. a function from n bits to 1 bit - which
takes one of three forms:

1. f(x) = 0 for all x ∈ {0, 1}n

2. f(x) = 1 for all x ∈ {0, 1}n

3. f(x) = 0 for half the bits in {0, 1}n and f(x) = 1 for the other half.

In the first two cases f is called constant and in the last case f is called balanced.
The problem is to determine whether f is constant or if f is balanced.

4.2 The Classical Solution

There are two possible solutions in the classical setting - a deterministic algorithm
and a probabilistic algorithm. The deterministic algorithm essentially consists of
trying out every possible n-bit one at a time and check if f(x) = 1 or f(x) = 0. If
the true case is 1 or 2 (i.e. f is constant), it takes exponential time (2n−1 +1 steps)
at least to determine the answer. If the true case is 3 (i.e. f is balanced) the worst
case is still the same, but if the algorithm is lucky, in the sequence chosen, it may
find it sooner.

The probabilistic algorithm is to sample n-bits uniformly at random, and test this
value. In this case, the algorithm can determine the true case with high probability
(with probability ϵ < 2−k after k steps). But to be absolutely sure, the worst case
run time is the same.

4.3 The Quantum Solution: The Deutsch–Jozsa Algorithm

We should warn, that the math gets a bit heavier in this section.
We follow the presentation found here. The quantum algorithm for solving this

problem is defined by a quantum circuit that is made up of multiple quantum gates
used in sequence. The Deustch-Josza algorithm is (see Figure 1):

1. Apply the n+ 1-qubit Hadamard gate H⊗n+1 to ϕ def
= |0⟩⊗n|1⟩

2. Apply the quantum oracle for f Uf (see below) to H⊗n+1(ϕ).

3. Apply the n-qubit Hadarmard gate to the first n qubit of the result of the
previous step Uf ◦H⊗n+1(ϕ).
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Figure 1: The quantum gate representation of the Deutsch-Josza algorithm.

� This means we apply H⊗nI to Uf ◦H⊗n+1(ϕ), where I is the identity gate
applied to the last qubit.

4. Measure the first n-qubits of H⊗nI ◦ Uf ◦H⊗n+1(ϕ). If this measured state is
|0⟩, then f is constant - otherwise it is balanced.

So we can solve this problem in 3 applications of quantum gates, followed by a
measurement. Therefore, we have an exponential speedup when comparing this to
the time required by classical algorithms!

We now explain each step in detail and justify the algorithm.

4.3.1 Step 1

The algorithm starts with the n + 1 qubit |0⟩⊗n|1⟩. Here |0⟩⊗n is the n fold tensor
product of the 1-qubit |0⟩ and so |0⟩⊗n|1⟩ is the n+1 qubit |1⟩) from the discussion
above.

The first step in the algorithm is to apply the 1-qubit Hadarmard gate to each
of the n+1 qubits (this is also equivalent to applying the n+1 qubit version of the
Hadamard gate to the n+ 1 qubits). This is written as H⊗n+1 and gives:

H⊗n+1(|0⟩⊗n|1⟩) = 1√
2n+1

2n−1∑
x=0

|x⟩ ⊗ (|0⟩ − |1⟩)

Note that you can calculate the above by pen and paper by the rules around
working with quantum gates we have identified in the previous sections

4.3.2 Step 2

Next, the algorithm assumes that we have the function f implemented as a quantum
oracle Uf . This oracle maps |x⟩|y⟩ to |x⟩|y⊕ f(x)⟩ where x is n-bits, y is 1-bits and
⊕ is the binary XOR operator.
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Given this oracle, after calculating the Hadamard transform, the Deutsch-Josza
algorithm applies Uf - which gives:

Uf ◦H⊗n+1(|0⟩⊗n|1⟩) = 1√
2n+1

2n−1∑
x=0

|x⟩ ⊗ (|0⊕ f(x)⟩ − |1⊕ f(x)⟩)

In the l.h.s. of the above, f(x) is either 0 or 1 for each x.
So if f(x) = 0, we have

|0⊕ f(x)⟩ − |1⊕ f(x)⟩ = |0⟩ − |1⟩

whereas, if f(x) = 1, we have

|0⊕ f(x)⟩ − |1⊕ f(x)⟩ = |1⟩ − |0⟩

So we can simplify:

Uf ◦H⊗n+1(|0⟩⊗n|1⟩) = 1√
2n+1

2n−1∑
x=0

(−1)f(x)|x⟩ ⊗ (|0⟩ − |1⟩)

4.3.3 Step 3

In this step, the algorithm focuses only on the first n-qubits of output from the
previous step. These qubits are:

1√
2n

2n−1∑
x=0

(−1)f(x)|x⟩ def= ψ

Now we apply the n-qubit Hadamard transform H⊗n to ψ the above. An alter-
native way to write n-qubit Hadamard operator is:

H⊗n(k) =
1√
2n

2n−1∑
j=0

(−1)k·j|j⟩

where k · j is the addition modulo-2 of the bitwise products = k0j0 ⊕ k1j1 ⊕ ... ⊕
kn−1jn−1.

Applying H⊗n to ψ, by the linearity of quantum operators we have

H⊗n(ψ) =
1√
2n

2n−1∑
x=0

(−1)f(x)H⊗n(|x⟩)

=
1

2n

2n−1∑
x=0

(−1)f(x)
2n−1∑
j=0

(−1)x·j|j⟩

=
1

2n

2n−1∑
j=0

|j⟩
2n−1∑
x=0

(−1)f(x)(−1)x·j

Note the flipped sum in the final step.
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4.3.4 Step 4

In the final step, we perform a measurement on the first n-qubits of the result from
the previous step. If we measure these, the probability of measuring state |j⟩ is∣∣∣∣∣ 12n

2n−1∑
x=0

(−1)f(x)(−1)x·j

∣∣∣∣∣
2

In particular, the probability of reading off state |0⟩⊗n is∣∣∣∣∣ 12n
2n−1∑
x=0

(−1)f(x)

∣∣∣∣∣
2

If f(x) is constant, this probability is just 1 - if f(x) is balanced, this probability
0. Hence, by looking at final measurement, we immediately know if f is balanced
or not.

4.4 Discussion

While the Deutsch-Josza algorithm shows the advantages of quantum computing in
a very specific setting, this problem/algorithm is not of practical use and mainly
of interest to theoreticians who study algorithms. However, the solution to this
problem does illustrate some general principles that are used to make Quantum
algorithms powerful: making use of superposition to compactly encode a lot of
information compactly, and then using quantum operators to manipulate and extract
the relevant information from them. It also lays the groundwork for more advanced
algorithms that use these other principles (like making use of the probabilistic nature
of the quantum computing) to solve more relevant complex problems.

5 Next Steps

If this article has whetted your appetite, and you want to learn more about quantum
computing, and in particular more complex and relevant practical algorithms (like
Shor’s algorithm), then the next step should be to study an introductory quantum
computing textbook. At this point there are many such books out there, and we will
mention a few. One book that I have used and found to be useful is [4]. The book [9]
is targeted toward computing professionals while [8] even makes fewer assumptions
about the background of the reader. [3] is a standard text on quantum computing
and quantum information, but much more rigorous and aimed at advanced readers.
Finally, [5] tackles the intersection of quantum computing and machine learning.

If you want to learn more about the overall industry context of quantum com-
puting, the set of articles written at Digital Catapult should be very useful.

If you want to be more hands on with quantum computing tools and algorithms,
the Qiskit library will be a good place to start.
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Finally, there are many online courses available for getting started on quantum
computing. We recommend having a look around to see which best suits your needs.

We hope that you have found this review valuable. If you have any ques-
tions or feedback please contact the quantum team at Digital Catapult quantum@
digicatapult.org.uk.

6 Conclusion

This article was an attempt to give a minimalist introduction to the most basic
ideas of quantum computing using the quantum circuit model of computation. The
introduction was minimal in the sense that it completely eschewed physics aspect of
quantum computing, which can be counterintuitive and hard to grasp, and focused
only on a mathematical/computational aspect, which can be understood with only
some basic linear algebra and complex analysis under the belt. We also described
one of the simpler quantum algorithms which demonstrates how quantum algorithms
can be superior to classical ones and pointed the reader to references that they can
use to learn more about quantum computing.

We hope that you have found this review valuable. If you have any questions or
feedback please contact the quantum team at Digital Catapult.
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