
Servitisation –
an overview and
how-to guide
for industry
Part of the Made Smarter
servitisation demonstrator
June 2022

In collaboration with

Contents

3 Section 1: Servitisation overview

 4 What is servitisation?

 4 What is a servitisation demonstrator?

 4 The value of IoT technologies
to servitisation

 5 The relevance of ecosystems

 5 The Made Smarter
servitisation demonstrator

 7 The servitisation platform
technology stack

8 Section 2: Component selection

 9 Component selection
roadmap and criteria

13 Section 3: How-to guide

 14 Servitisation demonstrator components

 14 Demonstrator component details

 19 Servitisation demonstrator architecture
and step-by-step guide

 28 Mobile application development

 29 Business application configuration

Made Smarter servitisation demonstrator

Servitisation
overview

3

Made Smarter servitisation demonstrator

What is servitisation?
The current economic environment, characterised
by globalisation and the pressure of competition and
uncertainty, has led many manufacturing businesses to
seek customised and personalised solutions/services
for customers. This has led to an increased desire
to achieve a higher level of customer satisfaction by
incorporating and providing integrated solutions and
services: servitisation.

Servitisation is the process of increasing value by
adding services to products to provide customers
a complete product-service system.

There are three types of servitisation:

 ■ product-orientated
 ■ use-orientated
 ■ results-orientated

Ensuring that a customer is provided with the
most appropriate servitisation model to achieve
their business objectives is of key importance to
successful and effective adoption. This means that
collection of the right type of data is of significant
value for new servitised propositions.

What is a servitisation
demonstrator?
A servitisation demonstrator is a rapid prototyping
environment that enables companies that are exploring
servitisation to identify the key digital components that
will bring their new business model to life. The solution
offers agile sprints to onboard assets, and provides
 the functionality required for a proof of value (PoV)
/minimum viable product (MVP).

The demonstrator demystifies the huge range of
technology options available (protocols, applications,
IoT platform, hardware and so on) by showing a best
practice approach to developing connected products
and services. These are then assembled to build
a servitisation platform.

The value of IoT technologies
to servitisation
Manufacturers are increasingly seeking to compete
with their market peers by offering new services in
addition to their products. Creating and capturing
value is an essential aspect in servitisation as it drives
buying decisions. Manufacturers’ use of internet
of things (IoT) technologies can be leveraged to
assess the potential value of servitisation, as well
as significantly enhance its impact.

IoT devices can add value to any servitisation
platform and the wider ecosystem:

CREATING NEW VALUE-ADDED SERVICES

IoT enables integration within enterprises for
onboarding new services. Companies adopting IoT for
servitisation can benefit greatly from services developed
by other companies, as they can be included to create
added value, or enhance an existing service to improve
customer experience, operation and satisfaction.

REDUCING COST AND OPTIMISING RESOURCES

Costs can be cut by sharing a major slice of the
infrastructure between multiple assets, using common
resources. Furthermore, assets can be tracked
using GPS throughout the servitisation journey and
monitored using real-time data. This is beneficial for
supply chain management of the asset and its parts
from production to destination, and provides customer
and business transparency in asset tracking.

INCREASING PRODUCTIVITY
AND REDUCING TIME

IoT can add value to a given servitisation model by
increasing productivity by transmission of asset data
using sensors, enabling services to address issues or
maintenance in advance or even in real-time. This also
reduces the time needed to identify and fix an issue.
The IoT technology stack can also help in managing
core and additional services, which increases
productivity and efficiency.

4

Made Smarter servitisation demonstrator

CUSTOMER LOYALTY AND
BETTER USER EXPERIENCE

Customer loyalty can be greatly enhanced by collecting
historical data to support marketing automation to
reach a much larger pool of customers with better
and more advanced services. Improving security,
remote monitoring, device management of the assets
and data governance using the IoT technology stack
also increases customer experience and trust, thus
improving scores for customer satisfaction, retention
and churn; average resolution time; and customer
referral rates.

The relevance of ecosystems
Servitisation requires businesses to work with
broader value chains with strong collaboration
between providers – the strength of the value being
provided is directly related to the strength of the
ecosystem. Ecosystems offer competitive advantage
to businesses, particularly within servitisation models,
as they open new vertical and horizontal markets.
Additionally, ecosystems accelerate speed to market,
as digitalisation and digital business models require
a broad set of skillsets for navigation and orchestration
of multiple industry players. Ecosystem partnerships
reduce this need, as they enable businesses to fill
gaps in capability and expertise.

For end users, servitisation establishes new
relationships with the business and also the
ecosystem value chain. There is more emphasis
on the customer experience and customer journey
which inevitably means more service oriented
agreements and puts the emphasis on businesses
to take more responsibility for their products
and services.

There are other key factors that should be considered
when building an IoT servitisation platform for the
wider ecosystem:

 ■ market readiness for the platform, market volatility,
cost and revenue streams

 ■ global rules and regulations regarding products
and services

 ■ accurate categorisation of the services being offered
and of ecosystem partners for better management
of services. This includes aspects such as the
identification of differences between basic services,
intermediate services and advanced services

 ■ strategy for the digital service being offered
and scalability of the technology

 ■ security strategy within the ecosystem and along
the value chain

 ■ shared digital tools for transparency, information
sharing and benchmarking

 ■ interoperability of the technology with existing
operational systems

 ■ the need to develop a value network and evaluate
risk and management through service level
agreements (SLAs)

 ■ differentiation between additional services,
a unique service proposition, and offering the
opportunity to a customise services

 ■ maturity of digital and product teams

The Made Smarter
servitisation demonstrator
The demonstrator detailed in Section 3 of this
report is modelled around a heating-as-a-service
servitisation project, using pumps and compressors.
This project aimed to help adopters understand
the technology required to leverage a servitisation
business model.

The key purpose of the project was to build
a servitisation demonstrator to showcase:

 ■ the advanced technology stack required to build a
servitisation demonstrator and the value of various
components in that technology stack

 ■ how various components in the technology stack
can be put together to make the servitisation
platform operate in a synchronous fashion

To demonstrate this capability, an end-to-end
technology selection, development and deployment
was required. In this case a brownfield air compression
machine was selected and it had no capability other
than dispensing air. To enable this asset to speak
for itself, it was equipped with various sensors for
vibration, temperature, humidity, air pressure and
current consumption sensors attached to it. This
demonstrates how an asset can be monitored – and
hence servitised – thanks to data processed through
a set of business logics.

5

Made Smarter servitisation demonstrator

Temperature
& humidity

Business application

Vibration

Pressure

Current

GATEWAY CLOUD APPLICATIONS

CRM application

Mobile application

COMPRESSORS & SENSORS

The data dispensed from sensors is picked up
by a gateway using LoRaWAN wireless connectivity
technology that pipes data through to the cloud
environment. The data is welcomed by a message
queuing service and then routed to different
destinations according to type. An application
programming interface (API) has been developed
for integration of a mobile application that is used
by customers, where they can monitor their asset
data and billing information, request maintenance
and receive notifications. Such interaction with the
end customer is an essential part of servitisation
as a continuous service, rather than a one-off sell.

The API is also used to integrate an enterprise
application that is used by the service provider,
through which they can visualise, manage, monitor
and maintain customers and data. As a vital part
of servitisation, the whole logic is integrated into
a CRM where SLAs are assigned to the service users.
All these IoT technologies operate together to add
value to the air-as-a-service model by reducing cost
and time, optimising resources, and providing better
customer experiences.

Figure 1 shows a high-level architecture for the
servitisation demonstrator and the key components
adapted for its modelling. The key elements are the
compressors and sensors unit, gateway, connectivity,
cloud, enterprise business applications, CRM
application and mobile application.

One of the goals for this demonstrator was to demonstrate that a servitisation solution can
be formulated using only open source solutions, proprietary solutions or a hybrid approach
– as demonstrated in this report. These combinations are interchangeable with other similar
products in the market, irrespective of whether they are open source or proprietary.

Figure 1: A high-level architecture for the servitisation demonstrator platform.

6

Made Smarter servitisation demonstrator

The servitisation platform
technology stack
A sophisticated technology stack is the backbone
of a delivered solution. While keeping up-to-date with
the latest technology and desiring optimal benefit
from the features of services on the market, it is also
important to have a flexible, ‘open box’ solution that
is efficient, integrable and interoperable.

Servitisation may become complex without
easy-to-integrate components – it requires a plug-
and-play approach wherever possible. This is made
possible with LoraWan OTA (over-the-air) technology
at the sensor level, so no wiring is required, while
providing an API to integrate new applications and
a mobile application, to enable the various end user
interactions that are vital to the business model.

The servitisation business model requires openness
for integration in many technology areas, such
as sensors, mobile and business application and

business intelligence (BI) tools. Selecting open
source technologies over commercial off-the-shelf
solutions has some benefits while bearing some
risks, such as maintenance and security management
(which can be addressed by a team’s experts when
the right components are used in the right place).
The cost benefit of open source is arguable, however
it provides many advantages that are important,
through upfront CAPEX, integration, interoperability
and flexibility.

An agile methodology is undoubtedly the most
desirable approach for solution development, especially
in environments where rapid development is required
for a component integration. As an example, various
data formats may be added to the datapool that is then
processed to servitise a value for an end customer.
In such a scenario, an unsupported data protocol
would need rapid development, and the integration
of a module that handles operation.

Multiple elements are required to form the technology
stack for a servitisation platform, as shown in Figure 2.

Applications services selections
(CRM, monitoring, device management, asset tracking, predictive maintenance etc.)

IoT sensors selections
(Temperature, humidity, pressure, vibration etc.)

Data storage selection

Cloud platform selection

Gateway selection

M
es

sa
gi

ng
 p

ro
to

co
l

(M
Q

TT
, A

M
Q

P
et

c.
)

Co
nn

ec
tiv

ity
(W

i-F
i,

ce
llu

la
r,

Lo
Ra

W
A

N
 e

tc
.)

Se
cu

rit
y

(H
ar

dw
ar

e,
 c

on
ne

ct
iv

ity
 e

tc
.)

Se
rv

ic
e

le
ve

l a
gr

ee
m

en
ts

Figure 2: Technology stack needed to create a servitisation platform

7

Made Smarter servitisation demonstrator

Component
selection

8

Made Smarter servitisation demonstrator

Component selection roadmap and criteria
The technology selection roadmap in Figure 3 shows the step-by-step
sequence for developing a servitisation platform solution.

Figure 3: Technology selection roadmap

SLA and data
governance design

Selection of messaging protocol
from sensor to gateway

04

09

07

03

01

11

TECNOLOGY
SELECTION ROADMAP

02

06

10

05

08

Identification of product/asset for
servitisation and business area

Sensor selection for the
product servitisation

Selection of
gateway

Selection of
connectivity

protocol between
gateway and

sensor

Selection of connectivity
protocol between sensor

and gateway

Selection of
cloud platform

Data storage
selection

Application selection to provide
a complete servitisation platform

Securing the platform

9

Made Smarter servitisation demonstrator

IDENTIFICATION OF PRODUCT/ASSET FOR
SERVITISATION AND BUSINESS STRATEGY

This focuses on the current technology readiness
level and various aspects to choose (and prioritise)
such as inventory management, promotion and
cross-selling, marketing automation, data governance
enterprise integration, service management, and
security. Businesses should clearly identify their
servitisation business model with respect to the
customer perspective and where the value lies in
contrast to the business strategy.

SENSOR SELECTION FOR
PRODUCT SERVITISATION

This depends on identifying the correct data
needed for servitisation model. For a brown field
asset, evaluation has to be done and there is greater
freedom of shaping the servitisation model to best
fit the business strategy. For a green field asset,
which has some sensors attached to it and is producing
data feeds then evaluation lies in enhancing these
capabilities. Adding more sensors to generate more
relevant and insightful data from the asset should
enhance or add to existing services.

The type of sensor selected will vary based on:

 ■ the type of data needed to be extracted from
an asset and the objectives to be achieved

 ■ the accuracy of the sensors, and how this may
be affected by various factors, such as weather
conditions. Accuracy may have an impact on the
cost of sensors and therefore the rate of return

 ■ the size, power consumption and shape of the sensor

Other factors include whether they are wired
or wireless, the type of application running on
the sensors, administration of these applications,
security factors and embedded intelligence.

SELECTION OF MESSAGING
PROTOCOL FOR SENSOR TO GATEWAY

Choosing the right data messaging protocol
for transmission of data from the sensors to the
gateway will enhance the performance (availability,
data transmission rate and so on) of communication
between the sensors and the gateway. Protocols
include MQTT, CoAP, OPC-UA, HTTP and AMQP
each is best suited to a specific application area
and situation.

Selection of a standard and effective messaging
protocol depends on the nature of the servitisation
platform and its messaging requirements. Messaging
protocols include MQTT (message queuing telemetry
transport), constrained application protocol (COAP),
advanced message queuing protocol (AMQP) and
HTTP. Considerations include:

 ■ encoding and decoding format
 ■ bandwidth and latency
 ■ interoperability
 ■ security
 ■ power consumption and resource requirements
 ■ licensing model such as open source, free, or licensed
 ■ quality of service/reliability
 ■ transport protocol such as TCP, UDP, SCTP
 ■ semantics
 ■ message size and overhead
 ■ abstraction criteria
 ■ standards such as OASIS, IETF, ISO, W3C
 ■ some of the other criteria are default ports,

cache and proxy support

SELECTION OF CONNECTIVITY
PROTOCOL FOR SENSOR TO GATEWAY

Choosing the right network protocol will result in
better data transmission and efficiency. The faster the
transmission rate, the quicker the service models and
analytics on the edge gateway or cloud can act, which
can be crucial for mission-critical applications. The
right choice of protocol will also reduce running costs,
improve efficiency and support advanced value added
services for the asset.

Selecting the right connectivity protocol/network
is important for connecting the servitisation platform
components and providing optimised and high-
performing services. Some of the considerations for
choosing connectivity type (such as Wi-Fi, satellite,
cellular, LoRaWan, NB-IoT, Bluetooth) are:

 ■ cost
 ■ scalability
 ■ deployment area
 ■ power consumption
 ■ coverage range
 ■ bandwidth

10

Made Smarter servitisation demonstrator

SELECTION OF GATEWAY

Evaluation of the factory environment and business
needs is required to analyse the type of gateway
and edge device necessary. Many factors have to
be taken into account, including the flexibility of
the architecture, hardware cost, cloud technology,
protocol compatibility, and type of applications
running on the gateway. Making the right selections
based on combined criteria will increase the
efficiency, involve new technologies and lower the
costs of the servitisation model.

Criteria that should be be kept in mind when
selecting a edge device include:

 ■ network connectivity and data messaging protocols
 ■ configuration of the edge device to better manage

and monitor a single or multiple edge devices
 ■ data pre-processing capabilities of the edge device –

data filtering, consolidation and rules engine. Others
to be considered include data pre-analytics, local
database, notifications, data compression, encryption,
and the ability to track and trace data sources

 ■ computation power of the edge device
 ■ running open-source and third party applications
 ■ power supply for the edge device
 ■ backup connectivity, storage and power supply

for emergencies
 ■ security

There could also be a fog layer (another layer of edge
device with higher computation abilities than the
gateway layer) between the gateway and cloud.

SELECTION OF CONNECTIVITY
PROTOCOL FOR GATEWAY TO CLOUD

The choice of network protocol for connecting the
gateway to the cloud infrastructure plays an important
part in ensuring the success of the servitisation
model. The parameters to be taken into consideration
are continuous availability, range, latency, power
consumption, bandwidth and ease of set-up. The right
choice of protocol will also reduce running costs.

SELECTION OF CLOUD PLATFORM

The right platform will support better service
management and the creation of added value services.

Choosing the right cloud platform is another vital
step and should take into account enterprise integration,
pricing model, size of the business, and reliability, as
well as the following considerations:

 ■ public, such as open source cloud solutions; private
on-premises cloud services; or a hybrid approach

 ■ the architecture of the servitisation platform
aligning with the business model and future
strategy, to evaluate and avoid unnecessary
expenditure in future

 ■ compliance with standards and data regulations,
such as General Data Protection Regulation (GDPR).

 ■ cloud security
 ■ managing the cloud and the infrastructure
 ■ service level agreements for availability, response

time, capacity, support etc. to monitor the KPIs.
 ■ cost of operation, as well as any related hardware

and software cost
 ■ container capabilities
 ■ scalability and flexibility to align it with changes,

such a new sales strategy or innovations
 ■ feasibility with current IT Infrastructure.
 ■ any requirement for data storage
 ■ running analytics and integration of third-party

applications such as CRM

SELECTION OF DATA STORAGE

Data storage is an important element of data
governance. The type and nature of the storage
has implications in terms of cost, complexity, and
operation – examples include relational databases,
time-series databases and network databases. The
right data storage is important for services that rely
on historical data, such as predictive maintenance.

Data storage selection will depend on the type of
data being generated in the servitisation platform.
This needs a careful evaluation before a selection
is made, keeping relevant criteria – including future
scalability and data portability – in mind.

11

Made Smarter servitisation demonstrator

Example criteria include:

 ■ online storage such as public/private/hybrid
or offline storage

 ■ type of data structure structure, unstructured
or hybrid

 ■ security standards and compliance certifications
 ■ total cost of ownership for the storage
 ■ any license requirements
 ■ SLAs for availability, response time, capacity,

support and so on, and the ability to monitor KPIs
 ■ capacity and scalability
 ■ connectivity, robustness, portability and stability
 ■ DevOps: especially the programming language

skill set required by in-house IT support teams
to run the infrastructure

The actual criteria will depend on the application
and architecture of the servitisation model.

APPLICATIONS SELECTION TO PROVIDE
A COMPLETE SERVITISATION PLATFORM

There are two types of application that may be
needed: those that will provide the fundamentals
of servitisation (such as CRM) and those that
will improve the capabilities of an established
servitisation platform to enhance and add value
to the servitisation model.

Examples of services that can be incorporated
include customer relationship management tools
that can also be utilised for in-person field services,
real-time monitoring of services on devices, customer
usage evaluation models, SLA management, API
management, database management, product
provisioning, device/fleet management, predictive
maintenance, remote diagnostics, log management
services, notification services, inventory management
services, asset tracking services, security services,
and enterprise integration services.

SECURING THE PLATFORM

After the servitisation platform barebone is in
place, the various aspects of the platform can be
secured, such as the gateway, connectivity, and
cloud. The reliability and integrity of servitisation
model are essential to customer satisfaction.

Security and privacy in the servitisation platform
should be built in from ground up. These are some
of the areas to be considered when designing the
platform’s security.

 ■ customer and business user security through
IAM policies, certificates and authentication tokens

 ■ security of sensors, edge devices and cloud
hardware through measures such as device
IAM policies and certificates

 ■ securing the connectivity and messaging
protocol, such as TLS v3

 ■ securing the database
 ■ securing the cloud
 ■ security policy management
 ■ software and firmware security

or implementation faults
 ■ hardware security
 ■ API security
 ■ container security
 ■ data anonymization, where required.
 ■ access control for business users

as well as customers

SLA AND DATA GOVERNANCE DESIGN

After securing the platform, one of the most
vital aspects of servitisation is the formulation
and modelling of SLAs, various data governance
rules and network policies for the entire platform.
This is vital for customer loyalty, cross-selling and
service management, and keeps the servitisation
model tightly knit.

A robust SLA template for inter- and intra-company
services will cover:

 ■ service performance commitment, acceptable
downtime, back-off period, up-time and so on

 ■ billing model
 ■ service credit
 ■ services covered

12

Made Smarter servitisation demonstrator

How-to guide

13

Made Smarter servitisation demonstrator

Servitisation demonstrator
components
The key components involved in the development
of the servitisation demonstrator are as listed below:

Hardware components

 ■ Hyundai HY5508 compressor
 ■ TE 8911-E vibration sensor
 ■ Netvox -75A clamp-on 1-phase current

meter sensor
 ■ Ellenex pressure sensor
 ■ Advantech WISE-6610 LoRaWAN gateway
 ■ ERS temperature and humidity sensor
 ■ Ethernet cable

Services components

 ■ AWS IoT Core
 ■ AWS Lambda services
 ■ AWS Cloud Watch
 ■ AWS Elasticsearch database
 ■ AWS PostgreSQL database
 ■ AWS serverless API
 ■ Trello

Software components

 ■ Visual Studio IDE
 ■ OS- Android OS v.5.0 and Windows 10
 ■ Postman

Data protocol components

 ■ MQTT

Network protocol components

 ■ LoRaWAN

Programming language components

 ■ Python
 ■ JavaScript
 ■ Java
 ■ HTML5
 ■ CSS

Container services components

 ■ Docker

Demonstrator component details
HARDWARE

Hyundai HY5508 compressor

We are using Hyundai air compressors of up to
seven PSI rating to generate air pressure for cooling
or pneumatic applications as the compressor of
choice for this demonstration. We can use a similar
principle to monitor heat pumps, motors, or other
compressors for various applications.

The compressor is built with automatic pressure
detection and safety. As soon as the pressure
exceeds seven PSI it switches off, and when the
pressure goes below four PSI it automatically turns
on, when connected to the mains. The installation
user manual gives step-by-step guidance to installing
the compressor and getting it up and running.

The compressor has been purchased with
accessories that are crucial to make it work.

1. Hose couplings
2. Y splitter
3. Hose coupler and tyre inflator
4. Various other optional adapters and fittings

These fittings are where pressure sensors can be
added. The external Y coupler can be thread mounted
using a coupler/adapter with a push-pull mechanism
on the compressor outlet hose. One of the coupler
ends can be fitted with a sensor and the other fitted to
the tyre inflator. Figure 4 shows the Hyundai HY5508
compressor and peripherals that were used in the
design of this demonstrator.

Figure 4: The Hyundai HY5508 Compressor with attached accessories

14

Made Smarter servitisation demonstrator

TE 8911-E vibration sensor

TE 8911-E is used to monitor vibration at a frequency
range of 1Hz to 10kHz across three axes, and is
suited to industrial applications. It operates within
a temperature range -20°C to 60°C.

The sensor can be stud-mounted onto the motor, or
stuck on with an adhesive pad. It is battery-operated
and can be turned on by sliding and turning the top
white cap and pressing the button. This can also be
tested with a mini-USB power cable. The user manual
provides step-by-step guidance to installation and
getting it up and running, and a detailed guide to the
payload formatter. Figure 5 shows the TE Vibration
Sensor 8911-E.

Figure 5: TE vibration sensor 8911-E

Netvox -75A clamp-on 1-phase current meter sensor

The Netvox-75A clamp-on 1-phase current meter sensor
is used for measuring current, and is installed on the side
of the compressor. It was chosen for its compatibility
with the LoRaWAN protocol and can detect the input
current of the single-phase alternating current.

To enable the device, move the magnet over the side
of the sensor to turn it on. Ensure there is sufficient
battery charge within the device. Figure 6 shows the
Netvox -75A clamp-on 1-phase current meter sensor.

Figure 6: Netvox -75A clamp-on 1-phase current meter sensor

Ellenex pressure sensor

The Ellenex pressure sensor PTS2 is used to monitor
the pressure data. This can measure any fluid or gas
pressure up to 10 PSI, which should be ideal for this
application (and for greater pressure, the supplier
has different models). This sensor was chosen for
its compatibility with the LoRaWAN protocol and
high accuracy and ultra low power consumption.

To enable the sensor, pressing the button on top
of the sensor with an antenna mounted to the sensor
will help send the data. Ensure that the device battery
has enough power.

The device setup and integration guide, with payload
format information, shows a step-by-step guide to get it
up and running. Figure 7 shows Ellenex pressure sensor.

Figure 7: Ellenex PSTS2 pressure sensor

Advantech WISE-6610 LoRaWAN gateway

The Advantech WISE-6610 gateway has been used for
this demonstrator implementation. The gateway setup
is complete and requires no accessories, apart from
an Ethernet cable for internet connectivity. There are
detailed step-by-step instructions of gateway setup
in Section 3 of this document. Figure 8 shows the
Advantech WISE-6610 gateway.

Figure 8: Advantech WISE-6610 gateway

15

Made Smarter servitisation demonstrator

Ethernet/RJ45 cable

An Ethernet/RJ45 cable needs to be attached
to the gateway for internet connectivity. Figure 9
shows a 2-metre Ethernet cable, but the length will
vary depending on the site where the gateway is
to be installed.

Figure 9: Ethernet cable

ERS Temperature and humidity sensor

An Elsys sensor is used for measuring temperature
and humidity over LoRaWAN protocol. This is
a wireless module and powered by two 3.6V AA
lithium batteries which makes it suitable for this
demonstrator. To enable the sensor, press the circle
button on the sensor and ensure the battery has
sufficient charge. Follow this https://www.elsys.se/
en/wp-content/uploads/sites/7/2018/06/ERS-data-
sheet.pdf for a detailed specification of the sensor
and for any troubleshooting. To add this sensor data
to The Things Network, a payload decoder is being
supplied by the supplier website. Figure 10 shows
the Elsys sensor.

Figure 10: Elsys sensor

SERVICES

AWS Lambda

AWS Lambda is a serverless, event-driven compute
service that lets you run code for virtually any type
of application or backend service without provisioning
or managing servers. It can trigger Lambda from over
200 AWS services and software-as-a-service (SaaS)
applications, and you only pay for what you use. We
chose this solution to deploy the code for a number of
reasons, including scalability, minimising provisioning
and managing infrastructure.

AWS CloudWatch

Amazon CloudWatch is a monitoring and
observability service. There are a number
of reasons for choosing Cloudwatch.

 ■ It provides data and actionable insights to monitor
applications, respond to system-wide performance
changes, and optimiSe resource utilisation.

 ■ It collects monitoring and operational data in the
form of logs, metrics, and events.

 ■ It gives a unified view of operational health
and has complete visibility of all the AWS
resources, applications and services running
on AWS and on-premises.

 ■ It is also used to detect anomalous behaviour
in your environments, set alarms, visualise logs
and metrics side by side, take automated actions,
troubleshoot issues, and discover insights to keep
applications running smoothly.

AWS Elasticsearch database

Elasticsearch offers features to help store, manage
and search time-series data, such as logs and metrics.
Amazon Elasticsearch is a managed service that
makes it easy to deploy, operate, and scale in the AWS
Cloud. It provides all the resources for the cluster and
launches it.

It can control access to your domain using
AWS identity and access management (AWS IAM),
and back up the data using automated or manual
snapshots. Some of the other reasons why we
choose this solution are that the service automatically
detects and replaces failed Elasticsearch nodes,
reducing the overhead associated with self-managed
infrastructure and Elasticsearch software.

16

Made Smarter servitisation demonstrator

AWS PostgreSQL database

PostgreSQL is an advanced, enterprise-class open
source relational database that supports both SQL
(relational) and JSON (non-relational) querying.
We chose this as it is a highly stable database
management system, with high levels of resilience,
integrity, and accuracy. PostgreSQL is used as the
primary data store or data warehouse for many web,
mobile, geospatial and analytics applications.

AWS Serverless API

This creates a collection of Amazon API Gateway
resources and methods that can be invoked through
HTTPS endpoints. These end-points are used to
communicate with the CRM application, business
application and mobile application. We chose firstly
for the reason that it works well and is simple to use
with AWS Elastic and AWS PostgreSQL databases.
Secondly, it is reliable and the server auto scales with
no payment required on idle time.

Trello

Trello is a web application which has been designed
by our team as an open-source Customer relationship
management (CRM) application. CRM is used for
managing all the business relationships and interaction
with customers and potential customers. We have
designed a ticketing system around it for any issues
that might arise while using the servitisation platform.
We used this as it is open-source, and a CRM solution
can be developed as per once customisation without
any payment required. This also has a lot of plugins
and API end-points to further integrate with other
high-end solutions.

SOFTWARE

Visual Studio IDE

Visual Studio is an integrated development
environment, and a feature-rich program that
supports many aspects of software development.
We have used this IDE for building the code and
debugging our mobile application and business
applications. Alternatively, Pycharm or any other
IDE could be used.

Operating system (OS):
Android OS v.5.0 and Windows 10

The demonstrator mobile application was built
on Android 5.0, and the business application was
developed on Windows 10. These operating systems
are used only for demonstration purposes, to show
that the servitisation platform is OS-agnostic. These
applications could be built on Ubuntu or any other
suitable operating system.

Postman

Postman is an API platform. Postman simplifies
each step of the API lifecycle and streamlines
collaboration. We have used Postman as an API
management platform for various end-points for
the entire servitisation platform. For a much higher
level production grade applications, Swagger UI
could be used. Postman was used enough to
manage the number of API end-points that were
used for the project.

DATA PROTOCOL

MQTT

MQTT is an OASIS standard messaging protocol
for the internet of things (IoT). It is designed as an
extremely lightweight publish/subscribe messaging
transport that is ideal for connecting remote devices
with a small code footprint and minimal network
bandwidth. We have used it as a data transmitting
protocol for sending data from the asset to the AWS
Cloud database. The reason for using this over CoAP
or HTTP protocol was that MQTT is standardised,
unlike CoAP, and can reuse a single connection for
sending multiple messages.

17

Made Smarter servitisation demonstrator

NETWORK PROTOCOL

LoRaWAN/3G/4G LTE/Wi-fi

LoRaWAN (long range wide area network) is an
upper layer protocol that defines the network’s
communication and architecture. More specifically,
it is a medium access control (MAC) layer protocol
with some network layer components. It uses LoRa,
but it specifically refers to the network and how data
transmissions travel through it. We used this for
communication between the asset and the gateway.
We choose this protocol because it requires minimal
power consumption and has a long signal range. For
connectivity between the gateway and the internet, we
have used an Ethernet cable. Apart from this, cellular
connectivity such as 3G/4G LTE can also be used for
connectivity between the gateway and the internet.

PROGRAMMING LANGUAGE

Python

Python is a high-level object-orientated programming
language. It is widely used in development of
back-end code and front-end web applications.
We have used Python to develop the front end and
the backend of the business application together
with Flask (microframeworks for backend) and
Bootstrap (front-end).

JavaScript

JavaScript is a text-based programming language
used client-side and server-side to make web-pages
interactive. This was used in the development of the
business application.

Java

Java is also a high-level object-orientated programming
language. This was used in the development of the
Android application on the mobile platform.

HTML5

HTML5 (HyperText Markup Language 5) is a mark-up
language used for structuring and presenting content
on the world wide web. This was used to develop the
business application.

CSS

Cascading style sheets (CSS) language is written
in a mark-up language and is a simple mechanism
for adding style (e.g., fonts, colours, spacing) to the
business application web pages. This was used to
make the business application visually more appealing.

CONTAINER SERVICES

Docker

Docker is a set of platform as a service products
that use OS-level virtualisation to deliver software in
packages called containers. Containers are isolated
from one another and bundle their own software,
libraries and configuration files; they can communicate
with each other through well-defined channels. Docker
is an open source platform for developing, shipping
and running applications. We have used Docker to
package the business applications and push them to
the AWS Lambda services. We have used Docker as
a container platform for faster deployment, mobility,
repeatability and automation.

18

Made Smarter servitisation demonstrator

Figure 11: Detailed architecture of the servitisation demonstrator

CRM

Cloud backend

Business view

Customer view

Gateway and
communications

Celular

Serverless
compute

Metadata

Time series
database

Serverless
compute

Data ingestion
service

Amazon elastic
block store

System logs

Relational
database

CRM integration Business app

WiFi

LoRa

LOG

Made-Smarter
air compressor

Servitisation demonstrator
architecture and step-by-step guide
Figure 11 shows the detailed architecture of the servitisation demonstrator. The Made Smarter
air compressor section consists of the Hyundai HY5508 compressor, TE 8911-E vibration sensor,
Netvox -75A current meter sensor, Ellenex PTS2 pressure sensor, and the Elsys temperature and
humidity sensor. The gateway communication consists of the Advantech WISE-6610 gateway
running on LoRaWAN.

19

Made Smarter servitisation demonstrator

STEP 1

Attach the respective sensors on the Hyundai compressor as shown in Figure 12,
and follow the manual for each sensor to attach them to the compressor.

Figure 12: The various sensor attachments to the Hyundai compressor

STEP 2

Switch on the Advantech WISE-6610 and use the Ethernet cable to connect to your
on-premises router, or to your premises Ethernet socket to connect to the internet.

Get the IP address of the gateway and access the user interface (UI) through your
browser. Login using the credentials provided.

Select the right LoRaWan frequency and direct the gateway to the TTN network
server endpoint.

Figure 13: GUI screen for Advantech WISE-6610 gateway configuration

20

Made Smarter servitisation demonstrator

STEP 3

Add the gateway to The Things Network (TTN) as shown in Figure 14, using a gateway ID
name of your choice, your frequency plan, and any delays to be configured on the gateway.
The rest of the information is auto-filled by the The Things Network stack gateway.

Then go to the Applications tab to add the application required to onboard the sensors
to the server, as shown in Figure 15.

Figure 14: Adding a gateway to the TTN

Figure 15: Adding an application to the TTN

21

Made Smarter servitisation demonstrator

Figure 16 shows how the sensors are added into the TTN application one by one, either
by searching the LoRaWAN repository for the device brand and entering the registration
number for the device, or by manually adding the frequency plan, LoRaWAN version and
regional parameters, generating a DevEUI, AppEUI, AppKey, and device ID for the device
and then registering. The step is self-explanatory on the TTN website.

Figure 16: Adding sensors into the TTN

STEP 4

We set up the CloudWatch environment. To use Amazon CloudWatch, an AWS account is
needed, allowing use of the services residing in the cloud backend environment as shown in
Figure 11 (for example, Amazon EC2, AWS Lambda, PostgreSQL, Elastic Container registry).

These generate metrics that you can view in the CloudWatch console, a point-and-click
web-based interface. This monitors the metrics of everything in the cloud backend, shows
an aggregated view of all runtime activities on the cloud and generates logs.

22

Made Smarter servitisation demonstrator

Figure 17: AWS CloudWatch metrics

Figure 18 shows a preview of the AWS Lambda environment, where all the code
developed for the environment is deployed. This includes all the settings and rules for
working with the TTN environment, PostgreSQL, serverless API and Elastic container.

Figure 18: A view of AWS Lambda

23

Made Smarter servitisation demonstrator

STEP 5

In this step we set up the serverless API gateway, as shown in Figure 19.
This contains the endpoints for the following:

 ■ the login credentials for the user of the mobile application on the customer side
 ■ notifications for the customer
 ■ the login credentials for the user of the business application on the business side
 ■ notifications for the business
 ■ consumption of the asset
 ■ asset types and details
 ■ temperature sensor data access
 ■ pressure sensor data access
 ■ current sensor data access
 ■ humidity sensor data access
 ■ vibration sensor data access
 ■ notifications for the asset
 ■ registration of new customers on the mobile application
 ■ registration of new users on the business application
 ■ maintenance of the asset
 ■ tariff for the specific customer

Figure 19: The serverless API gateway

24

Made Smarter servitisation demonstrator

STEP 6

Next we set up the PostgreSQL database with a number of tables, as shown in Figure 20.

 ■ Access types for users of the business applications
 ■ Admin table
 ■ Asset table that contain list of assets and their details
 ■ Asset metering for the tariff calculation
 ■ Asset type for various types of asset
 ■ Events for all events happening in the asset
 ■ Maintenance requests being raised by the customer
 ■ Metering type for the service the customer is using and the service level availability
 ■ Notification type
 ■ Sensor type
 ■ Sensor details
 ■ User notifications raised on the mobile application, such as user maintenance

requests or asset anomalies
 ■ User account for the customer

Figure 20: The PostgreSQL view of the various tables

STEP 7

The next step is to set-up the Elastic database on AWS for storing the various sensor
data on the database, as shown in Figures 21 to 24.

 ■ Figure 21 shows pressure sensor data information, including sensor ID, timestamp,
payload and device EUI

25

Made Smarter servitisation demonstrator

 ■ Figure 22 shows vibration sensor data information containing amplitude, frequency
and percentage, as well as sensor ID, timestamp, payload, device EUI

 ■ Figure 23 shows temperature and humidity sensor data information
 ■ Figure 24 shows current sensor data information

Figure 21: The AWS Elastic database for pressure sensor data

Figure 22: The AWS Elastic database for storing vibration sensor data

26

Made Smarter servitisation demonstrator

Figure 23: The AWS Elastic database for storing temperature and humidity sensor data

Figure 24: The AWS Elastic database for storing current sensor data

27

Made Smarter servitisation demonstrator

Mobile application development
The demonstrator includes a mobile application for
use by servitisation customers. It is a native Android
application coded in Java, and is supporting devices
running Android OS v.5.0 or newer (API level 21). It
was designed and developed taking into consideration
all guidelines proposed by Google, and uses the
Jetpack suite to ensure backward compatibility.

The application uses an authentication mechanism
via the login page (shown in Figure 23) which can
notify the user in case of wrong credentials or
nonexistent accounts. After successful login, it
presents a dashboard that includes usage statistics
and recent incoming messages from the system.

Additionally, a user can use the menu to navigate
to a screen that lists all their assets, and can retrieve
detailed information about them, including historical
data generated by the sensors on board each asset.

The application also runs an MQTT client through
a service that enables two-way communication
between the Android phone/user and the system.
Based on this mechanism, an alarm and notification
system alerts clients to critical usage events
or maintenance scheduling. This system can be
extended to support any type of communication.

Finally, the application is Firebase-ready in case
another notification mechanism is needed or the
need to explore in-app analytics is required.

Figure 25: Mobile application features

28

Made Smarter servitisation demonstrator

Business application configuration
The servitisation demonstrator includes a business application for business users,
designed and developed to demonstrate some of its core features.

The backend was developed using the Bootstrap and Flask development framework,
coded in Python. The frontend of the application was developed in HTML5, CSS and
Javascript. Then the entire business application is containerised using Docker containers
and deployed on the AWS Lambda EC2 server.

The application has an authentication mechanism via a login page (shown in Figure 26)
which can notify the business user in case of wrong credentials or nonexistent accounts.

Figure 26: Login page for the business application

After a successful log in, it presents a dashboard for the customer to choose from
a drop-down list as shown in Figure 27. This presents an enterprise dashboard showing
various metrics such as consumption of the asset for the user, temperature, pressure,
humidity, voltage, vibration.

29

Made Smarter servitisation demonstrator

Figure 27: Example of the application’s enterprise dashboard

30

Made Smarter servitisation demonstrator

Additionally, a business user can navigate using the menu on the left of the screen
that lists customer profiles as shown in Figure 28. Here a customer can be chosen from
the dropdown list and his credentials can be viewed. The customer details tab shows
all customers currently listed on the system and currently using the assets services.
If a specific customer is to be searched then it can be searched via the search bar beside
the Display all user tab. This page also contains the ticketing system which is linked to
the Trello CRM application (shown in Figure 31).

The CRM application is embedded into the business application using APIs. The ticketing
tab can be used to raise any tickets against any maintenance request raised by the user
which gets directly logged into the CRM application. The CRM application contains an
SLA for each ticket to be resolved within 24 hours.

The Asset tab in Figure 28 allows to choose a customer and the specific asset which
belongs to the customer from a drop down list. It presents Asset details for that customer
and the list of sensors attached to that specific asset can also be viewed via the Attached
List of Sensor details. Then the list of sensors can be searched to get details about a
specific sensor. Furthermore, historical data generated by the sensors onboard every
asset such as humidity, temperature, current voltage, vibration and pressure is displayed.

31

Made Smarter servitisation demonstrator

Figure 28: Example of the application’s enterprise dashboard

32

Made Smarter servitisation demonstrator

Figure 29: The business application’s customer profile page, where searches can be run and tickets raised

A notification mechanism has been implemented as shown in Figure 28 which
shows notification types such as maintenance requirement notification, threshold
exceed notification. This notification log can then be searched using the search
tab for all possible variables that could be of interest.

33

Made Smarter servitisation demonstrator

Figure 30: Notification log page for the business application

Figure 31: Trello CRM on the business application (accessible via Customer Profile tab on the left menu)

34

If you would like further
information on Digital Catapult’s
work on the Made Smarter
servitisation demonstrator,
please visit our website.

