
DLT Field Labs

1

BACKGROUND
Blockchain was the buzz technology of the last year. 
Everyone started talking about it, companies doubled 
their value by just mentioning they use it, and initial 
coin offerings (ICOs) popped up everywhere. At the 
same time, it was increasingly clear that not many 
blockchain-based products were making it to market 
or were proving to be commercially viable. 

To help companies understand blockchain and separate the value from 
the hype, Digital Catapult has grown an internal team to design and 
build full-stack blockchain applications. As part of our creative industry 
programme, Digital Catapult has collaborated with the UK Games Fund 
and developed a user-centric product, which allows early-stage, ad-hoc 
teams of indie game developers to agree on ownership for a specific 
game and to record their decisions on a public blockchain.

The alpha version allows creative teams to allocate different types of 
shares for an ad-hoc project, add new team members, and vote on 
proposals using a transparent and tamper-proof process. It also allows 
the teams to manage disputes and involve agreed arbitrators to resolve 
future disagreements between the team members. 

Through this journey we have developed modules and reference  
designs, learning many valuable lessons that we would like to share  
with the community. We believe that this project demonstrates many  
of the benefits of blockchain and also exposes many of the challenges 
that any company who wants to work in this space will have to face, 
such as deciding when to use blockchain and when to use traditional 
databases, which blockchain flavour to choose for a specific business  
use case, and so on. 

Blockchain for the creative industry

Blockchain is the technology behind Bitcoin and other cryptocurrencies.  
It was designed initially to prevent double spending without a central  
point of authority, which was one of the biggest challenges in developing 
a decentralised currency system. The real hype around blockchain started 
when Ethereum was launched in 2015 with the purpose of allowing 
developers to  build decentralised applications (dApps). We assume 
that the reader has a basic knowledge of blockchain and understands 
the different concepts behind it. If not, a list of important blockchain 
white papers and articles can be found here 67 blockchain articles and 
whitepapers that shaped crypto into what it is today. 

At the beginning of the project we agreed upon these key guidelines: 

• Use a public, permissionless blockchain network
• Use popular platforms and tools
• Use a production network (not a test one)
• User experience (UX) is important. We wanted to  

build a product for normal users, not just developers
• Properly engineered solution, cloud based (AWS),  

security in mind and fully tested

TYPICAL USE CASE

Imagine a team of game developers who have decided to design and  
build a game. Sarah and Matthew are software developers, Ben and Ran 
are animation and graphic designers. The team members believe they 
have a great idea for a game, but are not yet ready to set up a company 
together. Also, some of the team members might work on other games 
with other teams, or work elsewhere part-time.

As the team is confident their game is going to be a huge success, 
they want to agree on percentage ownership allocation beforehand to 
avoid future arguments and disputes. They want to publicly record their 
agreement and to allow other contributors or investors to join in their 
effort as it develops. They also agree to nominate Paul and Mark from  
UK Games Fund to help them resolve disputes in the future.



Published: June 27th 2018Blockchain for the creative industry

2

They decide on the following share allocation:
• Sarah: 100 shares
• Matthew: 100 shares
• Ran: 100 shares
• Ben: 50 shares
• UK Games Fund: Agreed arbitrator

At some point the team realise that they need another software developer 
to work on an Android version of the game. They invite Callum to the team 
and propose to give him 50 shares in return for this task. One member 
of the team creates a proposal and they can all vote on it. If more than 
50% of the voting shares approve this proposal, Callum will receive his 
50 shares. The team can decide to give Callum 25 shares before the job 
starts, and 25 shares upon completion of his task.

Similarly, investors can get shares in return for investing in the team and 
the game.

If the team votes on a proposal that is against the terms of the contracts, 
illegal or unfair, for example if the team decides to cancel Ben’s shares, 
Ben can ask Paul and Mark from UK Games Fund to start a dispute 
resolution process which can enforce another proposal that gives Ben 
back his shares. 

The full use case is explained in detail in the following white paper:

WHY BLOCKCHAIN ?  
 
Three years ago, if the above use case had been described to professional 
software developers they would have probably suggested developing a 
product and implementing it using a three-tiered architecture: a database 
that holds the share allocations and user details, a backend which handles 
application-specific logic, API requests, authentication and authorisation, 
and a frontend that implements the user interface.  
 
 

So why blockchain? Why do we need to add a component this complex 
to our system, run the same code on thousands of machines around the 
world, pay money for transactions, and wait minutes for them to  
be approved? What is the advantage that blockchain provides over 
existing products? The answer is that it’s all about fraud risks, 
transparency and trust.  
 
Existing online products which manage ownership of assets and rights all 
present multiple risks: 

1. Cyber security risks: A hacker, internal or external, might get access 
to the database, modify some of the records and their backups 
leaving no evidence of the previous state and no way to recover  
from it.

2. User transparency: You, as a user, only see what the user interface 
presents to you. You have no way to know what is actually stored in 
the database.

3. Audit log and history transparency: Traditional databases only 
store and manage the current state. Systems might keep internal 
logs, which hold records of each transaction for many years, but 
these logs are usually just a dump of cryptic long text lines used for 
troubleshooting and are not human readable.

4. Hosting: The company who hosts the product might go bankrupt, 
they might delete your records or not care about them.

5. Change management: The product might change and the agreed 
upon processes when setting up the share structure are now 
different. Perhaps voting rules have changed or maybe the  
dispute resolution process is different. You have no control over  
the product and no way to prevent a company from changing the 
rules of the game.

6. Signing ceremony: There is no way for users to prove which actions 
and operations they approved as their signature is not attached to 
every transaction.

How much we care about these risks depends on how valuable the assets 
that the product manages are; essentially ‘what is at stake’? As the value 
increases, users want to take fewer risks and have more guarantees that 
the product will protect them. 

So why blockchain? When using blockchain as a data layer there is no way 
to erase the history. Once a transaction is approved and mined it is in the 
blockchain forever; everyone can see it, verify its content and its origin. 
Transparency, traceability, immutability and security are inherent features 
of any blockchain. 

How do traditional companies solve these issues today? They spend 
a lot of money buying cybersecurity tools and products, they develop 
internal processes and replicate their data to make sure the service level 
agreement (SLA) is kept to. 

There is a misconception that blockchain is a trustless system. It is said 
that you, as a user, don’t need to trust anyone; neither your bank, nor 
your lawyer, and that somehow blockchain will protect you against all of 
these third parties. What actually happens is that you are asked to trust 
different third parties; the company who develops the product that you 
are using (e.g. a wallet provider), Ethereum/Bitcoin developers and finally 
mining pools.



Published: June 27th 2018Blockchain for the creative industry

3

So, it all comes down to trade-offs and risk management, just like 
any other engineering decision. When we build products that manage 
ownership of assets and rights we can use blockchain in order to get 
some of these benefits ‘out of the box’, or use traditional solutions and 
wrap them with the right tools and processes to get the same end result.
 

WHY A PUBLIC PERMISSIONLESS BLOCKCHAIN?

The difference between public networks and private ones is mainly related 
to whom is allowed to add a node to the network and participate in the 
consensus protocol. Anyone can run dApps over public networks and 
get access to the services that the network provides - such as mining, 
submitting transactions, and deploying contracts. Anyone can also be a 
miner on these network and maybe, if they invest enough resources, turn 
it into a profitable business. However, to setup a private network, you 
would normally gather together several companies or organisations in 
the same industry to create a consortium who share the same problem 
and interact with each other and then agree upon access permissions to 
the network. If a single company ends up running the network, most of 
the benefits that blockchain technology provides are removed because 
there is a “single point of failure” again. Public networks have their 
disadvantages as well. You will have to pay for each transaction and 
experience the results of events occuring on a network that you don’t 
control, which might affect your operations. 

More information on the differences between private and public 
blockchains is available in this article:
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

For our project we chose to use a public permissionless network because 
it was easier and faster. Setting up a private network requires long term 
commitment from a number of independent companies/organisations 
in the games industry, and although this is probably the way forward, we 
wanted to prove the use case first.
 
 

WHY ETHEREUM AND WHY SMART CONTRACTS? 

There are two leading public blockchain platforms in common use: Bitcoin 
and Ethereum (others are rapidly catching up, and we continue to watch 
this space.) We chose to use Ethereum because it’s not just a blockchain 
platform, it also allows you to run arbitrary code (smart contracts). 

There are two main advantages to running smart contracts on a 
blockchain as opposed to running the same code off-chain:

1. Smart contracts can safely hold cryptocurrency and make decisions 
as to who to transfer it to and when. For example, a user who buys 
a game can transfer Ether (Ethereum coin) to the smart contract 
and the smart contract can decide to split the amount of Ether 
between the team members based upon the share allocation in its 
state. Additionally, smart contracts can interact with other smart 
contracts, and activate methods that can transfer cryptocurrency or 
information to other addresses.

2. The smart contract code, just like any other data on the blockchain, 
is persistent and cannot be modified. Once the smart contract is 
deployed to the blockchain, it is final, there is no way to change it 
and any functionality that it includes is fixed and permanent. This 
means that when you agree to the service rules there is no way for 
anyone to manipulate them in the future. There are some schemes 
and design patterns which allow versioning of smart contracts, like 
proxy contracts or contract delegation, but they are not as simple as 
a traditional code upgrade.

Both of these advantages are balanced by concomitant risks. Firstly,  
what happens if we deployed our contract and now realise there is a  
bug in it or that it is missing functionality? More importantly, the code for 
the smart contract is publicly available and it could be just a matter of 
time until somebody finds a security vulnerability in it and extracts all the 
cryptocurrency from it.  Trust No One: Ethereum Smart Contract Security 
Is Advancing

For these reasons we would recommend avoiding smart contracts  
unless they are really necessary. For many use cases, running code off-
chain that relies on data on-chain is sufficient. This does centralise the 
governance of the system into the hands of the data processor, but also 
lowers the risks of smart contract failure during these early days  
of blockchain technology.

WHY A PRODUCTION NETWORK?

Ethereum exists as one production network and several test networks. 
Test networks are similar to the production network in almost every 
respect, but have fewer miners, less activity and much lower difficulty, 
so that it is purposely very easy to get Ether for testing purposes. As we 
are building a product mainly for demonstration purposes it makes more 
sense to deploy it in the test network and save money. 

However, we realised that running smart contracts in the production 
network would expose us to many more interesting and surprising 
behaviours. Estimating the gas price (the cost of deploying or executing 
a smart contract) is not as trivial as it seems. There are many network 
effects like ICO sales and hard forks which one must be aware of. We 
wanted to experience these behaviours and learn from them. Another 
reason why we preferred to deploy our smart contract to the production 
network is that the Ethereum test network is unstable. There are many 
hackers who try to break it and test weird things on it with the goal of 
improving Ethereum overall. The goal of this project was to support real 
fledgling companies and we needed to use the real network to support 
this functionality.
 
 

BALANCE BETWEEN TRANSPARENCY AND PRIVACY

One of the key design decisions that we agreed upon at the beginning 
of the project was about which data to store on-chain and which data 
to store off-chain. Data we store on the blockchain is publicly available, 
transparent and immutable, whereas data that we store off the blockchain 
is private and confidential but is not immutable, so careful consideration 



Published: June 27th 2018Blockchain for the creative industry

4

should be taken when making this decision. In light of GDPR it is critically 
important for any teams using public blockchains to consider ways to 
avoid storing Personally Identifiable Information (PII) on-chain.

We decided to store only the game name, game description and share 
allocations on the chain, whereas emails and names of the team 
members (the PII) were kept off the chain.

This means that anyone can query the blockchain and extract the 
ownership structure for every game that we submit. On the other hand, 
there is no easy way to know who actually holds the shares as there is 
no public directory which links blockchain addresses to emails or names. 
One could argue that the addresses to which a share allocation belongs 
may be considered linkable to PII, but the jury is still out on this point.

Off-chain data is stored in a standard postgreSQL database hosted 
securely in our private AWS account where only authorised services  
can access it.
 
 

PRIVATE KEYS

Whenever users submit transactions to the blockchain, they need to sign 
them using their private keys (signing ceremony). Without private keys 
there is no way for a user to vote, transfer shares or create proposals. The 
signature is also used to confirm that the transaction has come from the 
user and not from anyone else. Private keys are very hard to remember 
as they are necessarily long, meaningless sequences of numbers and 
characters. For this reason they must be stored somewhere private and 
protected, usually using a password or some sort of hardware device. 

Unfortunately, when users lose their private keys, unlike existing online 
products, there is no way to recover them or reset them. Storing a backup 
of the private key on an off-chain server is a serious cybersecurity risk, 
so the only alternative in these situations is to create a new private key 
for the user. As the blockchain address is derived from the private key, 
somehow the shares of the user under the previous address must be 
transferred to the new address.

Losing private keys is an unavoidable scenario, therefore dApps must 
include a secure and trusted mechanism to protect the assets and rights 
of users when it happens. 

In our implementation, transferring shares between an old key and a new 
key is handled just like any proposal. The team, once informed of this 
situation, can vote to move all of the shares from the old account to the 
new account. In cases where the team is not cooperative, or when the 
user holds the majority of the voting shares, an arbitrator can enforce a 
proposal to move the shares.

 

 

USER EXPERIENCE AND PERCEPTION

How users interact with the blockchain and what they perceive of 
the process was a key question for us to investigate and understand 
throughout the project. We conducted several user testing sessions 
and realised that there is a big gap between the perceived benefits of 
blockchain and what users actually understand is happening behind the 
scenes and the risks they take. 

Generally speaking, users trust applications far too much: when asked 
to load a private key or to sign a transaction they will cooperate without 
verifying what it means. We believe that it is dependent upon the 
application developer to build a process which is on one hand secure and 
transparent, and is on the other hand simple to use. Users of an ideal 
blockchain product will not be aware of the technical details of what 
happens behind the scenes or even what blockchain means but will still 
appreciate that the product they use is more trusted and secure.

We discovered that the experience and perceptions of a user changes 
when using a blockchain app, which exposed important gaps.

In terms of experience:
1. To interact with blockchain, vote and sign, transaction users need 

Ether in their account. Buying Ether is a complex and long process 
even for technically capable users. 

2. Users need to remember two passwords and to know when to use 
the correct one: the first to sign in to the service and the second to 
unlock the private key; one can be reset and one cannot.

3. Private keys, unlike passwords, are long and meaningless numeric 
sequences. There is no way for users to remember them correctly, 



Published: June 27th 2018Blockchain for the creative industry

5

so they must be stored securely for many years. We found that most 
users just store them as files on their disk/laptop without creating 
backups and forget about them.

4. ‘Ethereum address’ is another confusing term for users. They are 
similar to bank account addresses, but are visible to everyone.

5. Users don’t necessarily understand that operations on the 
blockchain are not immediate, they can take minutes to be 
completed and some operations might fail.

Perception:
1. Some of the data that users provide will be publicly available  

forever without any means to delete it.
2. Blockchain has a bad reputation for hackers and illegal activities.  

We don’t trust it. 
3. Cryptocurrencies are unstable. Their value changes dramatically 

every day.

 To mitigate some of these gaps, we decided on the following UX strategy:

1. Users don’t need to buy Ether. The product automatically transfers  
a small amount of Ether to their account so that they can interact 
with the blockchain and submit transactions. As we are transferring 
only a small amount of Ether to each account, the chances that 
users would steal the Ether and use it for another purpose are 
relatively low.

2. As users are not aware of the Ether being used behind the scenes, 
they don’t need to care about or be aware of Ether price fluctuations.

3. Whenever the user interacts with the blockchain, we substantially 
change the design of the web page to highlight the importance and 
criticality of the user’s actions, thus creating the perception of a 
signing ceremony experience.

4. The private key is stored securely in the browser so there is no need 
to upload it for every transaction. This was a compromise made 
between the risk of key loss versus security. 

 

SMART CONTRACT DESIGN

It may seem at first glance that designing smart contracts is similar 
to designing any other object oriented software. You have state and 
code and functions that modify it. Solidity, which is the most common 
programming language for writing smart contracts on Ethereum, is 
similar to Javascript or C in many ways, so the general assumption is that 
any experienced software developer can produce a smart contract fairly 

quickly. However, after writing a few lines of code in Solidity developers 
will start to realise that this programming language is unlike any other 
they have worked with before. 

Language Limitations: Solidity is a domain specific language whose 
purpose is to provide a somewhat JavaScript-like language which 
abstracts the low-level details of the Ethereum Virtual Machine (EVM) 
from the user. Unfortunately, there is a strong debate within the 
community as to whether such a language is really what smart contracts 
should be written in. Certainly the language as it stands has some pretty 
big gotchas which have been written about at length, for example:

• How to secure your smart contracts six solidity  
vulnerabilities and how to avoid them part one

• How to secure your smart contracts six solidity  
vulnerabilities and how to avoid them part two

• Solidity gotchas

From a developer’s point of view this means you have to be really careful 
and invest the time and effort to test and audit your contract code for 
security vulnerabilities.

Contract size: Deploying a contract is no different from submitting any 
other transaction to the Ethereum blockchain. This means that contracts 
must fit within a block and that the contract size should be executable 
within the block gas limit. With the current block gas limit of 8 million  
‘gas’ this means the maximum contract size is about 29KB. When 
deploying contracts larger than this, developers should split the contracts 
or use libraries. This in turn comes with its own risks, as highlighted by 
the parity multisig wallet bug from November 2017 (http://paritytech.io/
security-alert-2/).

Gas estimation: Ethereum is able to execute whatever code is stored 
in a target smart contract. Ethereum code is arbitrary and Turing 
complete meaning that ahead of time there is no way to know how much 
computation will be done by the smart contract or even if it will finish 
(https://en.wikipedia.org/wiki/Halting_problem). To make sure that the 
execution of a smart contract doesn’t grind the whole network to a halt, 
each transaction is charged based upon the amount of computation 
consumed. This is done in two steps; the contract caller pays an amount 
based on their estimate of the maximum cost of execution (the ‘gas 
limit’). The code is then run. If the code starts to cost more than the gas 
provided then execution is halted, any change to the state is rolled back, 
but the caller is still charged. If the execution of the smart contract code 
uses less than the gas provided, the caller is refunded the difference.

This overcomes the impossible task of having to check if a transaction 
will finish by making the user place limits on transaction execution. Now 
though, the user has to decide on these limits. A lot of the time this is 
easy; do a dummy run of the execution and see how much it cost. But 
what happens when the cost is dependant upon other transactions or 
runtime data such as block hashes? This might sound abstract but in 
a voting system an early vote is potentially very different in cost to the 
late vote that accepts or rejects a proposal. When choosing a gas limit, 
the developer needs to know the context of the call and estimate the 
maximum possible cost of the transaction. For this project we simulated 



Published: June 27th 2018Blockchain for the creative industry

6

worst case costings for each transaction type and used those as limits. 
The process for this will, however, be application-dependant and may 
inform contract design.

Gas estimation is only half of the problem when trying to price a 
transaction. The gas limit sets how much computation may be performed, 
but this must also be priced in Ether (the base currency of the Ethereum 
blockchain). In order to introduce competition between transactions the 
user also sets a price in Ether that they are willing to pay for their gas. 
This means the final transaction cost is given by:

Transaction_cost = gas_used × gas_price(in Ether)

When a miner is picking transactions to include in a block (including 
transactions that call smart contracts) they will start with those that 
have the highest gas price as this will be part of their reward. A developer 
therefore needs to have an idea of gas market conditions in order to set 
a price for a given transaction. One option is to leave this to the user, 
but this exposes an end user to strange concepts they are unlikely to 
understand. Another is to dynamically set the gas price using a service 
like ETH Gas Station https://ethgasstation.info/ but this is a centralised 
service and hence prone to corruption or ‘rigging’. The best option is 
to use deployed infrastructure that does this for your app, and options 
for this have started to recently spring up, e.g. https://github.com/
ethgasstation/gasstation-express-oracle. All things considered, there 
is still no best practice way to do this. As a developer you must choose 
which approach to take, considering the likely complexity of your final 
code and the user experience you are seeking to provide. 

Agile / Waterfall: there is no MVP (minimum viable product) with smart 
contracts on Ethereum. Once a smart contract has been deployed, it’s 
very hard to modify it. This means that software developers need to be 
really careful when using standard agile processes such as continuous 
delivery. A Waterfall approach somehow feels better when developing 
smart contracts: you want to understand all the requirements and 
scenarios and document them, review them several times, put everybody 
in the same room and think about all the edge cases, what needs to be 
configurable, who should have access to what, what data is private, what 
is transparent and what should be hashed. You then need to write a test 
document, which tests every feature and covers every line of code. Formal 
verification might also be important if your contract holds or deals with 
any amount of money. Finally, before deploying to production you should 
re-review the process, review the code again, and get everybody in the 
team to sign off on it.

Smart contract upgrades are not impossible though. In our design, we 
implemented a way to upgrade our code and transfer the state to a new 
contract. Contract upgrades must be approved by all team members who 
have voting shares and some of them might refuse to do so for many 
reasons. Also, this defeats the principle that ‘code is law’ and that code 
should be immutable, and opens a backdoor for malicious hackers who 
can leverage it to hack the contract and extract the money it holds.

Contract Roles vs. Users: in some situations it is desirable to have 
different roles within a contract and assign users to these roles. For 
example, in the UK Games Fund use case there are two official arbitrators: 
Paul and Mark. Both of them can manage, dispute and enforce proposals. 
In the future there might be a need to add more arbitrators or change 
the current ones. The implementation we chose was to create a proxy 
contract that we called a ‘gold’ contract. The gold contract has several 
responsibilities:

• Bank: It holds a small amount of Ether and transfers an initial 
amount to the team members upon creating the game contract.

• Factory: It creates the actual game contracts.
• Role Proxy: It holds the list of arbitrator users and proxies their 

requests to the game contracts. This way, the game contracts only 
see one arbitrator (the gold contract) and are not aware of the actual 
arbitrator who initiated a transaction.

Multiple simultaneous proposals: An interesting edge case is what 
happens if there are several pending proposals. Some proposals may, 
once accepted, change the number of voting shares. We had many 
discussions on what to do in these situations. Should we use the updated 
number of voting shares across the other pending proposals, or should 
we use the number of voting shares a user had based on the time that the 
pending proposal was created. Finally, we decided that if any proposal 
changes the voting shares, all pending proposals would be reset and 
members would need to vote on them again.

To conclude, smart contracts are an interesting and compelling concept 
but require a substantial amount of technical investment and support. 
When deciding to incorporate smart contracts in any system, it’s advised 
to carefully weigh the advantages and reasons behind it.

 

ENGINEERING A BLOCKCHAIN PRODUCT

25 years ago, before we had the Web and online products, software 
developers had the luxury of deploying enterprise software in a fixed and 
controlled environment. They could define the devices customers used 
their software on and set up the network configuration that supported it. 
As the internet evolved and online products emerged, software developers 
had to adapt to new scenarios where they could not predict the devices 
their customers would use their software on and how their network 
connection was going to behave. 

Looking at this from a three-tiered architecture perspective (Presentation-
Application-Data) developers could not control or define the link between 
the presentation layer and the application layer. Imagine what happens 
when users who use an online product lose their internet connection or 
change their internet access method. Messages between the frontend 
and the backend disappear, they arrive in a different order or are 
duplicated. Experienced frontend and backend developers learned to 
handle these edge cases and wrapped their software from both sides to 
accommodate them. 



Published: June 27th 2018Blockchain for the creative industry

7

On the other side of the system, backend developers could rely, most 
of the time, on expected behaviour between the application layer and 
the data layer. Databases were tuned and sized to reach the desired 
performance, and integration was fairly simple and reliable. 

Blockchain changes all of this. When using blockchain as the data layer, 
backend developers now need to worry about unexpected behaviour on 
this link as well. When submitting transactions to the blockchain there  
is no guarantee that they will be accepted, for example, in the case of 
setting too low a gas price. Some transactions might be stuck in limbo  
for a few days and some might be accepted, but potentially after a few 
blocks they will have been rejected. There are two different states: what 
you write to the blockchain, and what you read from it. This inconsistency 
can sometimes last for a few minutes and needs to be managed as it  
can be somewhat confusing for the user.

In our implementation we have developed a Transactor service,  
which handles all of these edge cases. It submits transactions to the 
blockchain node, tracks their progress, resubmits them if needed and 
filters rejected ones. In this way the unexpected behaviour is masked 
from the application.

Furthermore, we have developed a contract watcher service, which 
monitors all the events from the gold contract and the game contract, 
parses them and pushes them to a message queue in AWS.

 

OPEN SOURCE AND COMMUNITY SUPPORT

Both of these services and additional packages have been open  
sourced and are available on our Digital Catapult Github account:  
Digital Catapult GitHub.

Transaction Watcher: ethereum-transaction-watcher
Contract Watcher: ethereum-contract-watcher

Ethereum Extract Contract Events: ethereum-extract-contract-events

All of our services including the application and the blockchain node were 
deployed to AWS using Terraform, CircleCI and Docker.

The following diagram illustrates the high level solution architecture:

 

LESSONS LEARNED AND FUTURE WORK

Developing a production-ready blockchain product turned out to be far 
more complex than we initially expected from many perspectives: user 
experience, engineering and operations. When we started this project 
we were confident that we knew why we were using blockchain for 
our product and what benefits we would get, but as we gained more 
experience with it, we realised we had more question marks than answers 
or revelations. 

Generally, the main advantages of Blockchain that we identified are:
• A tamper proof database which is very difficult to hack.
• A transparent database which everybody can verify independently 

for current and historical data.
• A distributed database which is resilient and can withstand many 

points of failure.
• A trusted database which include sophisticated authentication and 

authorisation protocols.

The challenges that we faced are:
• Communicating these benefits to customers and end users.
• Engineering a user friendly product which was secure and reliable.
• Operating the solution, monitoring it, specifically the complexity of 

buying and transferring Ether.

To summarise, Blockchain does introduce some new ideas and concepts 
and it holds many promises, but sometimes traditional, simpler solutions, 
although not as hyped, may be the best way to solve our problems.


