
M
achine Learning P

latform
s

Machine
Learning
Platforms
Using, extending and creating
platforms to accelerate machine
learning efforts and generate growth

Research report 2019

Digital Catapult
101 Euston Road
London NW1 2RA

0300 1233 101

www.digicatapult.org.uk

www.papis.io

D
igital C

atapult

 Machine learning platforms 1

2 Introduction

2 About machine learning platforms

4 Who is the report written for?

4 Outline of this report

5 Scope of this report

8 1. Pre-trained models as a service platforms

9 Giving machine intelligence superpowers
 to software via APIs

10 Platforms as a service to leverage
 pre-trained models

14 2. Vertical machine learning
 as a service (MLaaS) platforms

15 Case study: building a custom fraud
 detection model with the Sift API

16 MLaaS platforms for predictive customer
 relationship management

17 Other example platforms

20 3. Semi-specialised machine learning
 as a service (MLaaS) platforms

20 Case study: building a custom vision
 model with the Clarifai API

24 Example Vision and Language platforms

25 Behind the scenes: automated ML
 (‘AutoML’) and transfer learning

28 4. Machine learning development platforms

29 High-level platforms as a service

34 Self-hosted studios

38 Cloud machine learning integrated
 development environments (IDEs)

43 Adding featurisation to machine learning pipelines

Report contents

48 5. Machine learning deployment platforms

48 Packaging models

49 Case study: serving predictions
 with Flask on Floyd

50 Case study: A/B testing models in
 production with Amazon SageMaker

51 Serverless model serving platforms

52 Example model management
 platform: Seldon Deploy

56 6. Choosing machine learning platforms
	 	 and	filling	the	gaps

57 Evaluating predictions

57 Preparing prediction APIs
 for usage in production

58 Performance monitoring and model
 lifecycle management

60 Example architecture of machine learning
 system components

61 Finding the right type of platform to use

64 Platform selection criteria

65 Scaling to many use cases:
 building proprietary platforms

68 Conclusions

70 Footnotes

74 About

74 Digital Catapult/Machine Intelligence Garage

74 PAPIs

74 Author

Choosing machine learning platforms
and	filling	the	gaps

2 Machine learning platforms Introduction

Machine learning (ML) platforms reduce
the time and cost of integrating ML into
software applications, for organisations
of all levels of ML maturity. ML platforms
can be ready-made or custom-built.

This report provides a survey of ready-made
platforms, grouped into different types and
presented from starting with those that are
aimed at general users, all the way to
platforms that enable machine learning
experimentation and optimisation. It shows
how startups and larger organisations can
benefit from utilising these platforms, and
what can be their limitations.

This report can also inspire the design of
custom-built platforms, which can serve
two different purposes:

1. Internal usage to accelerate ML efforts

2. Selling access to generate economic growth

ABOUT MACHINE LEARNING PLATFORMS
Gartner defines ML platforms as “software products that
data scientists use to help them develop and deploy their
own data science and machine-learning solutions”1. For
the purpose of this report this definition is extended to
include products that can be used by software developers
too. This report focuses on the integration of ML into
software, for the purpose of creating machine intelligence,
rather than on building scientific knowledge from data.

ML platforms can come in different formats, as they can
be based on open source or commercial software, and can
run on-premises or in the cloud. Some of these platforms
are made available “as a service”, which Wikipedia2 defines
as “a category of cloud computing services3 that provides a
platform4 allowing customers to develop, run, and manage
applications without the complexity of building and
maintaining the infrastructure typically associated with
developing and launching an app”. This model has the
following advantages:

 – There are no set-up costs (which is ideal for startups
and for pilot projects)

 – Users pay for the functionality they are interested
in (not for hosting), according to usage

 – There’s nothing to install

 – Users do not need to worry about where the application
program interface (API) and the models are running, for
example, which processor to use (CPU/GPU), how to scale
up or down as the volume of prediction requests evolves

Introduction

 Introduction Machine learning platforms 3

Introduction

We believe most people will begin their AI
journeys using cloud services rather than
creating and managing million-node
neural networks in their own data centres.
Even if you eventually outgrow a publicly
available AI cloud service, your experience
using it will help inform the design and
scaling of your own AI infrastructure.”

Andreessen Horowitz — AI Playbook5

“

4 Machine learning platforms Introduction

OUTLINE OF THIS REPORT
The different types of ML platforms are presented
in the order below:

 – Pre-trained models as a service: platforms that give
access to predictions from pre-trained models, aimed
at product teams (including domain experts and
software developers)

 – Vertical ML as a service: platforms that allow the creation
and deployment of custom predictive models for a specific
type of business problem, aimed at product teams

 – Semi-specialised machine learning as a service (MLaaS):
platforms that allow the creation and deployment of
custom predictive models for a specific type of input
and task, aimed at product teams

 – ML development platforms: platforms that include an
experimentation component facilitating the creation
of predictive models, used by data scientists as well
as experts in the domain where ML is applied

 – ML deployment platforms: platforms that simplify
the deployment of models created by data scientists,
used by data engineers and data scientists

This report ends with recommendations on how to
choose the best platforms for individual use cases,
and how to fill their gaps in the creation of production
machine learning systems.

Introduction

WHO IS THE REPORT WRITTEN FOR?
This paper has been written predominantly for users
and potential users of ML platforms, including:

 – Software developers and product managers, who
will be adding machine intelligence superpowers
to their applications

 – Data scientists, who will be shipping ML models in
production, and extending toolkits to run ML experiments

 – Data and ML engineers, extending these platforms
or creating new ones

 – Domain experts, exploring ideas of new ML use cases,
assessing their feasibility, and building prototypical
solutions to business problems

This report will also be of interest to managers, analysts,
and consultants who have heard that machine learning
can help improve products, software applications, and
processes, who are trying to figure out the right way for
their organisation to make the most of ML, but who do
not have the time to go through all the options.

 Introduction Machine learning platforms 5

SCOPE OF THIS REPORT
VentureScanner segments US AI startups into 13 groups,
including Machine Learning Platforms, which had 357
startups at the end of Q1 2019, and Computer Vision
Platforms, which had 234 startups in the same period.

The objective of this report is not to provide an exhaustive
list of platforms, but to give a broad overview of the types
of products and services that are available. It provides
examples of platforms with different characteristics,
from which to extract general principles, ideas and
recommendations. The examples that are discussed
here were chosen for illustration purposes, and this
report is not intended to provide a benchmark. It does,
however, provide advice to create individual benchmarks
and to help readers to find or create the best ML platform,
for their own needs or those of their customers.

The number of ML platforms quoted above could be even
bigger, if vertical ML platforms are considered. Indeed,
some of these were listed by VentureScanner in the
Machine Learning Applications group, including Sift6, a
startup that allows users to build custom fraud detection
models and to access them in a production application
via a prediction API.

Introduction

The number of vertical ML platforms is expected to
continue to grow. David Kelnar of MMC Ventures remarks
that nine in ten AI startups in Europe are vertical7, and it is
anticipated that many of them could benefit from offering
platforms for others to build on. Bradford Cross of Data
Collective Venture Capital sees vertical AI startups as
providing fully-integrated solutions to business problems8,
which are powered by predictive models. However, the
authors of Prediction Machines9 argue that it could be
more advantageous in some cases to give access to the
models’ raw predictions, as illustrated with an example
in the medical sector. The vertical platforms that are
presented here provide both business solutions and
access to raw predictions.

This report is written to inspire organisations not only
to use existing ML platforms, but to build on them and
create their own vertical platforms, for their customers
to use and to build on.

 Contents

8 Pre-trained models as a service platforms

9 Giving machine intelligence superpowers
 to software via APIs

10 Platforms as a service to leverage
 pre-trained models

6 Machine learning platforms Pre-trained models as a service platforms

1.
Pre-trained
models as a
service platforms

 Pre-trained models as a service platforms Machine learning platforms 7

8 Machine learning platforms Pre-trained models as a service platforms

This example relates to developers of a
software application that can be improved
with predictive features. This could be a
food delivery app, for instance (think
UberEats), to which predicted delivery
times could be added. Predictions would
be based on a model that maps a given
order, plus its context to a delivery time.
Creating this model would require analysis
of historical data. Assume that a data
scientist has already built such a model.
What would be the best way to make it
accessible to application developers?

To add further context and examples: imagine developing
a customer support application for a global company.
It wants to improve the app to reduce the average response
time and increase customer satisfaction. When receiving a
new support ticket, the first step towards an answer is to
assign a representative based on the customer’s language.
This step could be automated with a language detection
model. Another idea of improvement would be to use
a sentiment model to identify the most negative tickets,
and to assign them to the most experienced reps.

The standard practice to make predictive models available
to developers is to create a prediction API. This section
explains how APIs work, and shows an example where
models made available by the Indico platform are used to
improve the routing of customer support tickets. It provides
examples of pre-trained models that anyone can re-use in
their own applications, and of platforms as a service that
provide access to their predictions.

1. Pre-trained models as
 a service platforms

 Pre-trained models as a service platforms Machine learning platforms 9

GIVING MACHINE INTELLIGENCE
SUPERPOWERS TO SOFTWARE VIA APIS
An API is a set of protocols, functions and definitions for
building software. It is made of “endpoints” that each define
a software functionality, via its expected inputs and outputs.
The implementations of these functionalities (that is the
code to run) would reside in a library — which we don’t
necessarily need access to. If the API was to be used from
a Python computing environment, it is known as a Python
API, as shown in examples later in this report. For now,
we do not want to favour any specific programming
environment (our app may not be written in Python), so the
report will be focusing on http APIs, that can be “called” by
sending http requests. These requests can be sent from any
programming environment chosen, for example, Python,
JavaScript, Go, C++, Swift, Java, or the command line.

Consider another example to illustrate how http APIs work.
Imagine developing an application used for customer
support by a team of representatives (think Zendesk).
The business serves customers globally, and wants to
improve the app so it allows the team of reps to provide
faster answers to support tickets. The first step to provide
an answer is to detect the language spoken by the customer.
The developer may want to route the ticket to the best rep
who speaks that language. One idea is to assign tickets
with negative sentiment to the best available reps.

There are cloud services that provide access to pre-trained
models for language detection and sentiment analysis, via
http APIs. Language detection and sentiment analysis are
the same for everyone, so it makes sense to reuse models
built by others.

The idea of calling an http API is the same as when typing
an http address in the browser: a request to a machine
(server) is sent to provide the data back in the form of a
webpage. There are just a couple of differences here:

 – When sending some content along with the request, for
example, for the input to pass the model (note that this is
similar to submitting an online form in the browser).
Most APIs use JSON10 as a standard to pass data back
and forth, which are made of key-value pairs. Here, only
one key is needed: “input”

 – The response will not be a webpage, but a JSON data
structure, where one key is “prediction”

Here is an example API call sent from the command line,
using a utility called curl11, to request a sentiment prediction
for this piece of text: “I will never stay in this hotel again”.

$ curl https://apiv2.indico.io/sentiment
-H ‘X-ApiKey: PASTE_YOUR_API_KEY_HERE’
-d ‘{“data”: “I will never stay in this
hotel again”}’

1. Pre-trained models as a service platforms

10 Machine learning platforms Pre-trained models as a service platforms

Some more comments:
 – $ is the command line invite (not to be typed)

 – https is the protocol used for the request

 – apiv2.indico.io is the address of the API server

 – sentiment is the API endpoint we are interested in

 – -H is used to specify request “headers”; here, an API key
is sent that allows us to authenticate to the server

 – -d is used to send data along with the request

The following response would be provided:
{“prediction”: 0.10827194878055087}

Sentiment values are given between 0 and 1, where 0
means extremely negative, and 1 means extremely positive.

This example API is served by Indico12, being accessed via
the internet. However, internet connectivity is not always
required to use http APIs, Indico for instance would be able
to access the API on the intranet. There are cases where
the http API would be served on the same machine that is
also calling for predictions (“localhost”). For instance, in
internet of things (IoT) applications, a connected device
equipped with a sensor could run a Node.js application that
would read sensor values and react to them, and it could
call a local http API in order to access a predictive model
that was created in another programming environment
(for example, Python).

APIs are powerful as they allow IT systems to decompose
into interoperating services. Here, APIs allow
app developers to focus on collecting data from the
app, and integrating predictions into the app, and can
be served locally, on-premise, or on the cloud.

1. Pre-trained models as a service platforms

PLATFORMS AS A SERVICE TO
LEVERAGE PRE-TRAINED MODELS
It is possible to think of many other examples of pre-trained
models on text data, that can be reused by anyone. If the
app allows its users to send messages and photos to each
other, it could improve by automatically filtering out bad
language, nudity in images, or by automatically detecting
scenes and objects in images and tagging them accordingly
(for example “beach”, “mountain”, “city”, “dog”, “phone”, etc.).

If developing an app for a connected security camera,
intelligence could be added to it by analysing images
captured from the camera upon detecting movement,
detecting humans, locating faces and finding if the
face is familiar or not, using a face recognition API
like that of Kairos13.

Clarifai14 is another platform that provides access to
several predictive models for images, via its API. It includes
for example a ‘Moderation’ model (that detects concepts
such as gore, drugs, explicit nudity, or suggestive nudity),
a ‘Travel’ model (that recognises specific features of
residential, hotel, and travel-related properties), a ‘General’
model that recognises over 11,000 different concepts
including objects, themes, mood, and many more models.

 Pre-trained models as a service platforms Machine learning platforms 11

1. Pre-trained models as a service platforms

Other language models provided by Indico include text
summarisation, emotion detection, personality detection
and political orientation detection. In addition to images,
videos and written language, there are APIs for speech, that
allow detection of spoken language, transcription of speech
to text, or speaker recognition, for example. For generic,
difficult problems such as those mentioned above, and
many more besides it often doesn’t make sense to develop
proprietary new technologies, but instead to leverage the
result of significant research and development by others.

These solutions are readily available as APIs offered by
platforms such as Google Natural Language API16 and
Google Vision API17, and Microsoft Cognitive Services18.

These are referred to as ‘pre-trained models as a service’
platforms. They typically target developers and product
teams. Organisations may not need to hire data scientists
to get started, but as referenced later in this report in the
section about platform choice, thoughtful usage of these
platforms is likely to require help from data engineers.

Accessing Clarifai’s Moderation models from a web interface15

 Contents

14 Vertical machine learning as a
 service (MLaaS) platforms

15 Case study: building a custom fraud
 detection model with the Sift API

16 MLaaS platforms for predictive customer
 relationship management

17 Other example platforms

12 Machine learning platforms Vertical machine learning as a service (MLaaS) platforms

2.
Vertical machine
learning as a
service (MLaaS)
platforms

 Vertical machine learning as a service (MLaaS) platforms Machine learning platforms 13

14 Machine learning platforms Vertical machine learning as a service (MLaaS) platforms

Similarly to pre-trained models as a service
platforms, vertical machine learning as a
service platforms provide ready-made ML
solutions to a prediction problem that others
also have, but with one notable difference:
the solution is based on an organisation’s
own data. They will be creating a predictive
model that is created from the data we
provide, for a specific ML task and a specific
use case, hence the word “vertical”. Google
calls them “AI (pre-packaged) solutions”.

One example of a vertical AI solution is Landing Light19:
it allows users to detect defects in manufactured objects,
based on images of those objects. A manufacturer would
need to provide training data, consisting of example images
of objects with and without defects. The solution relies on
ML algorithms tuned for this particular type of classification
problem and for this particular type of input (images of
a single object against a monochromatic background),
in a way that proved successful on different training sets
provided by different manufacturers. These algorithms
would run on the new training dataset provided by the
manufacturer resulting in the creation of a model that
is unique to them.

By focusing on a specific ML use case, and by utilising
a solution, that has already had success for various
organisations, with similar business problems, vertical
platforms are able to drastically reduce the time for
others to create custom models built from their own
data. It also reduces the uncertainty in the effectiveness
of these models, compared to tackling new types of ML
use cases; the uncertainty that remains is only due to
the quantity and quality of our data.

In this section, a case study of the Sift20 fraud detection
API shows how to query fraud risk scores and how to pass
new observations for the risk model to update itself. This is
followed by examples of platforms that target prediction
problems for customer relationship management (CRM)
(including support ticket allocation), and other examples
of vertical platforms in various domains.

In addition to leveraging the best algorithms for the job,
these platforms provide an edge on the data preparation
side, with problem-specific data pre-processing
(for example, de-saturating and resizing images of
manufactured objects), data augmentation techniques
(for example, flipping or rotating or cropping images),
and data enrichment (for example, adding features
extracted from social networks to better represent
customers. When making predictions on platforms
or adding their company information extracted from
a curated database). These platforms can also apply
domain-specific logic on top of predictions (for example,
removing out-of-stock items from e-commerce
recommendations, and enforcing product variety).

2. Vertical machine learning as
 a service (MLaaS) platforms

 Vertical machine learning as a service (MLaaS) platforms Machine learning platforms 15

CASE STUDY: BUILDING A CUSTOM FRAUD
DETECTION MODEL WITH THE SIFT API
Vertical platforms that can be used instantly, and that provide
APIs, are targeted at product teams and developers. The APIs
include, as usual, an endpoint to query predictions, as well as
endpoints to provide training data. This can be a single data
point, or a multitude of data points, to add to or to replace an
existing training set. The expectation is that sending additional
data should automatically trigger model updates.

Sift is a fraud prevention service based on ML. It makes it
very easy for businesses that process credit card payments
to solve the problem of fraudulent payments. This is based
on predictions of how likely fraud is, for a given transaction.
These predictions are given as scores, between 0 and 1,
and this is how scores are queried:

Example request
$ curl https://api.sift.com/v205/events?
return_score=true&abuse_types=payment_
abuse,promotion_abuse
 -d ‘{
 “$type” : “$create_order”,
 “$api_key” : “YOUR_API_KEY”,
 “$user_id” : “billy_jones_301”,
 “$session_id” : “gigtleqddo84l8cm15qe4il”,
 “$order_id” : “ORDER-28168441”,
 “$user_email” : “bill@gmail.com”,
 “$amount” : 115940000, // means $115.94
 “$currency_code” : “USD”
 }’

Example response
HTTP/1.1 200 OK
Content-Type: text/json;charset=UTF-
Connection: keep-alive

{
 “body”: {
 “status”: 0,
 “error_message”: “OK”,
 “request”: “body_of_the_request_you_sent”,
 “time”: 1454517138,
 “score_response”: {
 “status”: 0,
 “error_message”: “OK”,
 “user_id”: “billy_jones_301”,
 “scores”: {
 “payment_abuse”: {
 “score”: 0.898391231245,
 “reasons”: [
 {
 “name”: “UsersPerDevice”,
 “value”: 4,
 “details”: {
 “users”: “a, b, c, d”
 }
 }
]
 },
 “promotion_abuse”: {
 “score”: 0.472838192111,
 “reasons”: []
 },
 },
 “latest_labels”: {
 “payment_abuse”: {
 “is_bad”: true,
 “time”: 1352201880,
 “description”: “received a chargeback”
 },
 “promotion_abuse”: {
 “is_bad”: false,
 “time”: 1362205000
 }
 }
 }
 }
 “http_status_code”: 200
}

2. Vertical machine learning as a service (MLaaS) platforms

16 Machine learning platforms Vertical machine learning as a service (MLaaS) platforms

For Sift to build and update the model, it would need
to identify whenever a transaction was successful and
when it was fraudulent. This is done using the decisions
endpoint. As an example, a decision could be “Accept
Order” or “Block Order”, for instance, if the payment
processor sends a notification to an analyst that a
payment did not go through, and the analyst manually
reviews the order, and decides to block it, we would
pass this data to Sift via the following call:

$ curl https://api.sift.com/v3/accounts/
{accountId}/orders/{orderId}/decisions
 -u YOUR_API_KEY
 -d ‘{
 “decision_id” : “block_order_payment_abuse”,
 “source” : “MANUAL_REVIEW”,
 “analyst” : “analyst@example.com”
 }’

This allows Sift to automatically learn from new data points,
and continuously improve the accuracy of risk scores.

It is possible to infer from these example requests
that Sift performs a classification task on tabular data.
Readers can learn more about the API via the developer
portal (sift.com/developers/docs)21.

MLAAS PLATFORMS FOR PREDICTIVE
CUSTOMER RELATIONSHIP MANAGEMENT
Infer22 is a lead-scoring solution, the input to the ML
models it builds is a prospective customer (lead),
represented with tabular data, and the score represents
how likely it is that the lead converts to an actual customer.
Infer integrates with customer relationship management
(CRM) systems, web analytics, and marketing automation
tools, from which it can extract training data, and where it
can give access to its predictions.

Salesforce Einstein23 is a solution that allows prediction
of several business outcomes, for a given customer input,
such as churn or lifetime value. Einstein Prediction Builder
allows users to create custom models on any Salesforce
field or object, with clicks.

The Einstein Intent API24 allows users to categorise
unstructured text from emails, chats, or web forms, into
custom labels to better understand what users are trying
to accomplish. One type of business case that can be
tackled with the Intent API is routing customer support
tickets (textual inputs):

 – Determining what products prospects are interested in and
sending customer inquiries to the appropriate salesperson

 – Routing service cases to the correct agents or
departments, or provide self-service options

Google Contact Center AI25 and Answer IQ26 are two other
platforms that provide similar solutions.

2. Vertical machine learning as a service (MLaaS) platforms

 Vertical machine learning as a service (MLaaS) platforms Machine learning platforms 17

OTHER EXAMPLE PLATFORMS
Google Cloud Talent27 is a human resources solution,
which allows users to score job candidates based on
the job description (textual data) and the candidate’s
profile (tabular data).

Dialogflow²8 is a platform that builds models to detect
the intent of a request/command to a chatbot or virtual
assistant (VA). If the interaction between user and VA is
via voice, a speech-to-text service can reduce this to a
text classification problem, on inputs of a certain nature
(that is requests). Custom intents can be defined, but we
would need to provide example requests, their associated
intents, and entities (for instance, the request “set a timer
to five minutes” has a time entity, which is “five minutes”).

Google Recommendations AI29 is an e-commerce solution
that can provide a set of product recommendations, for a
given customer. Once data sources are connected (Google
Tag Manager, Google Shopping, Google Cloud Storage,
BigQuery), custom models are automatically created.
Recommendations can be configured to either increase
engagement, revenue, or conversions. The platform allows
users to apply business rules to tune recommendations
shown to customers by adding diversity among
recommended products, filtering out unavailable products,
etc. Recommendations can be added anywhere (product
pages, shopping cart, order confirmation page, mobile app,
email). The service scales automatically to match traffic to
our e-commerce site.

2. Vertical machine learning as a service (MLaaS) platforms

 Contents

20 Semi-specialised machine learning
 as a service (MLaaS) platforms

20 Case study: building a custom vision
 model with the Clarifai API

24 Example Vision and Language platforms

25 Behind the scenes: Automated ML (‘AutoML’)
 and transfer learning

18 Machine learning platforms Semi-specialised machine learning as a service (MLaaS) platforms

3.
Semi-specialised
machine learning
as a service
(MLaaS) platforms

 Semi-specialised machine learning as a service (MLaaS) platforms Machine learning platforms 19

20 Machine learning platforms Semi-specialised machine learning as a service (MLaaS) platforms

The platforms in this section specialise in
inputs of a fixed type or nature. Similarly to
vertical platforms, they allow users to build
custom models from their own data. These
platforms specialise in one type of ML
task, for instance classification or concept
detection, but are less specialised than
vertical platforms, as they can be used to
tackle any use case for that type of task.

In theory, a semi-specialised API could be used to build a
vertical API. For instance, the API of a language platform
could be used to classify customer support tickets, and
build an intelligent routing solution (similar to Google
Contact Center AI). Or a vision API can be used to classify
images of manufactured objects, and build defect
detection solutions (similar to Landing Light). Some of the
techniques listed at the end of the previous section could
be implemented: we would not have the ability to tune
algorithms, but we could use the knowledge of the
domain of application and of the problem to implement
data pre-processing and augmentation techniques.

The case study of Clarifai’s image classification API
shows how to concretely use the API to build a defect
detector, followed by a list of some other Vision platforms
that specialise on image input data, and language
platforms that specialise on text input data. Finally, some
of the limitations these platforms can have are introduced
by looking behind the scenes and discussing transfer
learning and ML automation techniques.

CASE STUDY: BUILDING A CUSTOM VISION
MODEL WITH THE CLARIFAI API
Clarifai30 is a platform that provides access to pre-trained
models, which detect concepts from images (for instance,
food items from pictures of dishes, down to the ingredient
level). It also provides the ability to create our own models.
The first step is to add images that contain the concepts
the model should see. Note that an image can contain
several concepts, which are not necessarily exclusive.
In this example case, the solution sought is a binary
classification model that detects defects in images
of manufactured objects.

Adding images with concepts
Data (in this case an image labelled as having a defect)
can be sent to Clarifai as shown below:

$ curl https://api.clarifai.com/v2/inputs
 -H “Authorization: Key YOUR_API_KEY”
 -H “Content-Type: application/json”
 -d ‘{ “inputs”: [
 { “data”: {“image”: {“base64”: “’”$(base64
/home/user/object1.jpeg)”’”},
 “concepts”: [{“id”: “defect”, “value”:
true}] }
] }’

More than one example can be sent in a single API call.

3. Semi-specialised machine learning
 as a service (MLaaS) platforms

 Semi-specialised machine learning as a service (MLaaS) platforms Machine learning platforms 21

Creating a model
Once all the examples have been added,
a model would be created as follows:

$ curl https://api.clarifai.com/v2/models
 -H “Authorization: Key YOUR_API_KEY”
 -H “Content-Type: application/json”
 -d ‘
 {
 “model”: {
 “name”: “defect_detector”,
 “output_info”: {
 “data”: {
 “concepts”: [
 {
 “id”: “defect”
 }
]
 },
 “output_config”: {
 “concepts_mutually_exclusive”: true,
 “closed_environment”: false
 }
 }
 }

 }’

A model id would be received in the response.
Let’s call it model_id.

Training the model
“Creating” a model just means that a model object has been
initialised. The model needs to be trained from data in a
separate call. When training a model, the system is told to
look at all the images with the concepts provided, and to
learn from them. This train operation is asynchronous — it
may take a few seconds or minutes for our model to be fully
trained and ready.

$ curl https://api.clarifai.com/v2/models/<model_
id>/versions
 -H “Authorization: Key YOUR_API_KEY”

The response will contain a model_version id.

Predicting
Predictions are queried as follows:

$ curl https://api.clarifai.com/v2/models/<model_
id>/outputs
 -H ‘Authorization: Key YOUR_API_KEY’
 -H “Content-Type: application/json”
 -d ‘
 {
 “inputs”: [
 {
 “data”: {
 “image”: {
 “base64”: “’”$(base64 /home/user/
new_object.jpeg)”’”
 }
 }
 }
]

 }’

3. Semi-specialised machine learning as a service (MLaaS) platforms

22 Machine learning platforms Semi-specialised machine learning as a service (MLaaS) platforms

If no model version id is specified, predictions will occur on the
most recent version of the model. Predictions can be queried
from a specific model version by changing the URL to

https://api.clarifai.com/v2/models/<model_id>/
versions/<model_version_id>/outputs

More images with concepts can be added, and the model can
be re-trained, which would produce a new model version.

3. Semi-specialised machine learning as a service (MLaaS) platforms

Creating models from the Clarifai Portal31

 Semi-specialised machine learning as a service (MLaaS) platforms Machine learning platforms 23

3. Semi-specialised machine learning as a service (MLaaS) platforms

Preview custom models in the Clarifai Portal³²

Model evaluation and threshold adjustment in the Clarifai Portal³³

24 Machine learning platforms Semi-specialised machine learning as a service (MLaaS) platforms

This uses a hybrid approach, where relevance is
determined based on text content and user behaviour.
For Vision, Amazon has Rekognition38 and Google
has AutoML Vision39.

Note that some of these platforms also offer data
annotation services, to help create proprietary models
(for instance, Google has a crowdsourced Data Labeling
Service40). If the platform being used does not have such
a service, developers can also use a data annotation
platform such as Figure Eight41. If data annotation
requires knowledge of the domain of application and
of the problem, developers may want to develop their
own data annotation interface, as Landing Light did.

3. Semi-specialised machine learning as a service (MLaaS) platforms

EXAMPLE VISION AND LANGUAGE PLATFORMS
Language platforms allow users to train custom text
models from their own data. Inputs would be text in a given
language, or images or video for Vision platforms; outputs
would be labels that identify concepts. These could be
references that are internal to our organisation, for example
project names or team names. Indico, whose pre-trained
models were presented in the first section of this report,
is one such platform. Other examples include Amazon
Comprehend34, Google AutoML Natural Language35, and
MonkeyLearn36. Lateral37 is another interesting platform,
which includes a tag suggestion API (based on existing
text documents and tags) and a recommendation API that
recommends similar documents to a given text document.

Landing Light’s annotation interface allows to indicate pixels of interest for classifying images42

 Semi-specialised machine learning as a service (MLaaS) platforms Machine learning platforms 25

3. Semi-specialised machine learning as a service (MLaaS) platforms

BEHIND THE SCENES: AUTOMATED ML (AUTOML)
AND TRANSFER LEARNING
Semi-specialised ML platforms use pre-configured ML
algorithms, and would automatically tune some of their
parameters based on the data provided. This is where the
name AutoML comes from, in the Google Cloud Platform
products (“Automated ML”), but it is not specific to Google.
This automation is extremely useful, but for it to work well,
it should use an evaluation procedure that makes sense
for the application.

Imagine building a model to detect fake reviews posted
on websites such as Tripadvisor or Booking.com that
should generalise to any website where reviews are posted.
It is important to ensure that the “validation data”, which is
used to evaluate models, comes from different websites
than the training data. However, most platforms would
choose this validation data randomly among the data
provided. If this is an issue for the application, as in the
case of fake review detection, a platform that allows users
to specify validation data explicitly should be sought.

In addition to using AutoML techniques, semi-specialised
platforms wouldn’t ordinarily create models from scratch,
but they would adapt existing models by using “transfer
learning” techniques. This works by extracting powerful
numerical representations of inputs, from pre-trained
neural network models. Such representations are found
in neural networks as intermediate layers of neurons.
The closer they are to the output of the network (that is
the thing to predict), the more specific they are to the task
that the network was trained on. The closer they are to the
input of the network (that is the original, raw representation
of inputs) the more general these representations are.

Transfer learning may not work if the nature of inputs on
which the new model is trained is too different from the
nature of inputs to the pre-trained models. For instance, all
of Clarifai’s models are made for images from everyday life.
Therefore, it is not clear if transfer learning would work on
medical images such as fMRI scans, or on satellite images.
Another approach may be needed to build models that
detect concepts on such images – for example anomalies
on medical images, or solar panels on satellite images.

 Contents

28 Machine learning development platforms

29 High-level platforms as a service

34 Self-hosted studios

38 Cloud machine learning integrated
 development environments (IDEs)

43 Adding featurisation to ML pipelines

26 Machine learning platforms Machine learning development platforms

4.
Machine learning
development
platforms

 Machine learning development platforms Machine learning platforms 27

28 Machine learning platforms Machine learning development platforms

ML development platforms (also called
“workbenches”) give more flexibility for
building custom models. Some of these
platforms also have the capacity to deploy
models as APIs for production usage,
however this report will focus on
deployment in the next section.

The platforms presented allow users to experiment with
different learning techniques, algorithms and parameters,
to evaluate them, and to create models with those that
work best on the data at hand. Their objective is to make
it easier and faster to create ML models, and to remove
the difficulty in using a mix of open source libraries,
connecting various software components, and making
it run on the appropriate infrastructure. They make
experienced teams more efficient in their ML efforts,
and they also democratise ML to a wider audience,
including (very) small and medium-sized businesses.

Platforms do this by either providing a web-based “studio”,
or an integrated development environment (IDE), with
collaboration features (so that each person in the team
has access to the same environment with their individual
account) and experiment tracking (functionalities to
record all experiments, browse, filter and sort them,
and to view results for each). A studio is a graphical
user interface (UI) for experimenting and building ML
models, without necessarily writing code. It gives access
to proprietary software with higher-level functionalities
than open source, such as AutoML. Model building can
also be done via an API (usually http or Python) that
provides the same functionality as the studio.

The studio is mostly intended for experimentation, whereas
the API can also be used for continuous delivery of models
and for their deployment. Once a learning technique and
parameters that work have been found through experimenting
in the studio, it can be used programmatically via the API.
It would be called by developers to query predictions, or to
trigger model creation. This can be useful to automatically
update an existing model with fresher data, or to create a
dedicated model per user of our application, that learns
from their own data (for instance, a priority filtering use
case could require different models for different end-users).

Platforms can be varied in their flexibility and ease of use: the
highest level platforms are the easiest to use, but the least
flexible; they are also the most restricted in the types of ML
tasks that can be tackled with built-in algorithms. This report
starts by presenting high-level platforms as a service, then
presents self-hosted platforms with studios built on top of
common open source libraries. All the studios mentioned in
this section are focused on tabular data; they allow users to
deal with classification and regression problems, unless
indicated otherwise. Note that they could also be used with
mixed data including image and text, after “embedding
them”: the image and text representations would be
transformed to numerical features, and thus be considered
tabular data; Indico has two API endpoints for that:
Text Features43 and Image Features44.

The report progresses to present cloud-based IDEs that
are more flexible, and also make developing with common
open source ML libraries easier. Finally the issue of
developing ML pipelines that include a featurisation
component is discussed.

4. Machine learning
 development platforms

 Machine learning development platforms Machine learning platforms 29

HIGH-LEVEL PLATFORMS AS A SERVICE
Platforms as a service are among the easiest
to use, as there’s nothing to install and no need
to worry about infrastructure.

High-level features include:
 – Automatic detection of the type of problem
(for example, classification or regression)

 – Automatic preparation of data (for example,
encoding of categorical variable, normalisation,
feature selection and so on)

 – Automation configuration of the learning algorithm
(AutoML with meta-learning and smart search of
hyper-parameters)

These platforms are particularly useful for those with less
knowledge of ML algorithms, and they can be accessible
to domain experts or software developers. Arguably, they
are also useful for data scientists, as they allow for faster
experimentation and fewer errors.

This, in turn, allows focus on everything that takes place
before and after learning from data — which is what
matters most in practice: gathering ML-ready data,
evaluating predictions, and using them in software.

BigML45 is a platform that provides a variety of built-in
algorithms for classification and regression (Decision trees,
random forests, boosted trees, neural networks, linear and
logistic regression) that supports numerical features and
categorical features, as well as text features.
It also gives access to unsupervised learning algorithms
(clustering with K-means and G-means, anomaly detection
with Isolation Forests, PCA, topic modelling) and time
series forecasting (exponential smoothing). Its “OptiML”
functionality implements AutoML techniques that find the
best model for a given training set, validation/test set, and
performance metric, in a given time budget. Its “Fusions”
functionality creates model ensembles.

The BigML Studio has great interactive visualisations,
see some examples below.

4. Machine learning development platforms

BigML’s Decision Tree interactive visualisation

30 Machine learning platforms Machine learning development platforms

4. Machine learning development platforms

Inspecting a neural network created automatically by BigML, with an interactive partial dependence plot

 Machine learning development platforms Machine learning platforms 31

The BigML API allows users to query predictions and
trigger model training at scale on the BigML cloud
infrastructure. Let’s assume that BIGML_AUTH is an
environment variable that contains the BigML username
and API key. Here is how the API would be called to use
OptiML for a given training and test datasets (identified
by their ids), in a way that maximises the area under the
receiver operating characteristic (ROC) curve (AUC):

$ curl https://bigml.io/optiml?$BIGML_AUTH
 -d ‘{
 “dataset”: “<training_dataset_id>”,
 “test_dataset”: “<test_dataset_id>”,
 “metric”: “area_under_roc_curve”,
 “max_training_time”: 3600
 }’

The request is asynchronous and will return an OptiML id.
After one hour (3600 seconds), the API can be hit to get
information about the OptiML object created, in particular
the summary that contains the ID of the best model that
was found for the dataset. Predictions can then be
requested from this model:

$ MODEL_ID = curl https://bigml.io/optiml/
<optiml_id>?$BIGML_AUTH | jq -r “.optiml.
summary.model.best”
$ curl https://bigml.io/predict?$BIGML_AUTH
 -d ‘{
 “model”: “’”$MODEL_ID”’”,
 “input_data”: {“text”: “I will
never stay in this hotel again”}

 }’

BigML is probably the easiest platform to use among
those presented in this section, but also the least flexible.
ML practitioners will find missing functionalities, such as
the ability to plot learning curves and to use a custom
performance metric. However, BigML allows users to
execute scripts on their platform in a language they created
and called WhizzML, which is a high-level programming
language specific to machine learning. This extends the
functionality of the platform. It is also one of the most
closed platforms here, as it does not play well with open
source, so is limited in the format in which models can be
exported. It is not possible to export modelling scripts —
however it is possible to see which algorithm and
parameters were used to create a model.

4. Machine learning development platforms

Inspecting the neural network parameters found by
BigML when creating an optimal model for a given
training set and cross-validation method

32 Machine learning platforms Machine learning development platforms

4. Machine learning development platforms

Google AutoML Tables46 is a beta product that bears
similarities to BigML, but is not yet intended for usage
in critical applications. Its UI is simpler, and the product
seems more targeted at developers than domain experts.
Google Cloud Inference API47 focuses on time series
prediction. It is an alpha product that doesn’t include a UI,
but is more geared towards deployment in production.

Craft.ai48 is a fully automated MLaaS platform for
experimentation and deployment, with a focus on
explainability and on the use of decision trees.

Microsoft Azure ML49 is an MLaaS platform offering
a studio, AutoML functionality, and the ability to turn
models into prediction APIs that scale automatically.

The studio has a component that was not present in
the other platforms presented: the “interactive canvas”.
It allows users to view and visually edit sequences of
operations on data (loading, preparation, modelling,
evaluation). A sequence of operations that take data
in and apply ML algorithms to produce (and evaluate)
a predictive model is called an ML “pipeline”. The canvas
makes it easier to understand pipelines, but also to
create them, by avoiding potential errors that are caught
by the interface (for example, missing inputs
to the data operations, or forbidden connections).

Microsoft Azure ML’s Studio — accessed July 2015

 Machine learning development platforms Machine learning platforms 33

4. Machine learning development platforms

Lobe50 is a service that Microsoft acquired in 2018, which
provides an interactive canvas and AutoML functionality,
but also allows users to deal with image features. It provides
an easy-to-use environment to automatically build neural
network models, via a visual interface.

Models are made of building blocks that can be fully
controlled (Lobe is built on top of TensorFlow and Keras);
some building blocks are pre-trained, which allows for
transfer learning. Training can be monitored with real-time,
interactive charts. Trained models can be made available
via the Lobe Developer API, or exported to Core ML and
TensorFlow files to run on iOS and Android devices.

Customising neural network models in Lobe (here, a CNN)52

Visual editing of a sequence of operations leading up to an ML model on image and numerical features, in Lobe51

34 Machine learning platforms Machine learning development platforms

SELF-HOSTED STUDIOS
Several other studios offer a canvas, under different names
— DataRobot53 calls it “Blueprint”, Rapidminer54 and Dataiku55
call it “Workflow” — and AutoML functionality. The ML
development platforms mentioned here are seen as
lower-level than the previous ones, since they are not
provided “as a service” and need to be installed and hosted on
our own (cluster of) machines. However, they have interesting
capabilities, which were not found in the MLaaS offerings.

One common aspect that these platforms share is that they
are based on standard open source ML libraries, and allow
users to use custom libraries and custom code. They let
users export ML workflows/pipelines as Python scripts,
and to export trained models to various open formats that
avoid lock-in. Note that some of the vendors mentioned also
provide separate deployment and model serving solutions.

Dataiku’s Data Science Studio (DSS) presents
the following advantages:

 – Connectors to many types of databases. Data sources
can be changed from a CSV file to a Hadoop File System
(HDFS) Uniform Resource Identifier (URI) for instance,
without having to change the rest of our ML pipeline

 – Visual data wrangling, feature engineering and feature
enrichment, to improve data and help prepare it before
usage in learning algorithms

 – Different ML back-ends providing built-in algorithms.
The back-end can be changed from scikit-learn to
Spark MLlib for instance, without having to change
the rest of the ML pipeline

 – Built-in clustering and anomaly detection algorithms

4. Machine learning development platforms

Training an MLlib model in Dataiku’s Data Science Studio56

 Machine learning development platforms Machine learning platforms 35

4. Machine learning development platforms

Comparing MLlib models’ performance in Dataiku’s Data Science Studio57

Visual AutoML in Dataiku’s Data Science Studio58

36 Machine learning platforms Machine learning development platforms

4. Machine learning development platforms

Prediction explanations in DataRobot59

Confusion matrix in DataRobot60

 Machine learning development platforms Machine learning platforms 37

DataRobot has the following advantages:
 – Automatic feature engineering

 – Model inspection features and visualisations
of prediction explanations

 – Advanced time series forecasting: several built-in
algorithms (ARIMA, Facebook Prophet, Gradient
Boosting), backtesting evaluation method, automatic
detection of stationarity, seasonality, and time series
feature engineering

4. Machine learning development platforms

Time series in DataRobot61

H2O’s Driverless AI6² is a similar product to DataRobot.
Both have a Python API. Below is a call to the start_
experiment_sync method of H2O’s Python API, which is
similar in spirit to the OptiML method of BigML’s http API:

params = h2oai.get_experiment_tuning_suggestion(
 dataset_key=train.key,
 target_col=target,
 is_classification=True,
 is_time_series=False,
 config_overrides=None)
experiment = h2oai.start_experiment_sync(
 dataset_key=train.key,
 testset_key=test.key,
 target_col=target,
 is_classification=True,
 scorer=’AUC’,
 accuracy=params[‘accuracy’],
 time=params[‘time’],
 interpretability=params[‘interpretability’],
 enable_gpus=True,
 seed=1234, # for reproducibility
 cols_to_drop=[‘ID’])

38 Machine learning platforms Machine learning development platforms

4. Machine learning development platforms

Floyd65 is a great platform to start with, as it is less
complex to use than competitors, but still provides a few
different options to run ML experiments. It gives access
to two types of CPUs and two types of GPUs, to choose
from depending on our needs. There are two different
ways in which experiments can be run:

 – Workspace, which is an IDE based on Jupyter Lab,
for interactive experimentation. It also gives access
to TensorBoard, and to a similar feature called
Metrics, that can be used with any ML library (not
necessarily TensorFlow) to monitor the progress
of model training

 – Jobs, for running longer experiments as scripts.
Jobs are started from a command line interface (CLI)
tool installed on our own machine, in the same way as
executing a script locally, but they are run on the Floyd
platform. The CLI also allows users to tag jobs and
to download outputs. The ability to browse the history
of jobs, to filter with tags, and to see result summaries
in the history, fulfils the role of an experiment tracker

Another useful feature is the ability to store large
datasets on the cloud platform and to share with
the whole team, so there is no need to download
the datasets locally and to keep them in sync.

The Floyd infrastructure is built on top of Amazon’s
North American public cloud, but Floyd can also be
installed on private clouds and on-premise, which is
one way it differentiates itself from Google and Amazon
products. For European companies, Faculty.ai66
provides an alternative based in the UK.

CLOUD MACHINE LEARNING INTEGRATED
DEVELOPMENT ENVIRONMENTS (IDES)
The last class of model development platforms can be
thought of as IDEs for machine learning, hosted on
the cloud. The platforms do not offer the high-level
functionality of the ML Studios previously presented,
but they benefit from cloud computing. It is common
practice among machine and deep learning practitioners
to use powerful, GPU-equipped virtual machines (VMs),
provided by cloud platforms, for their experiments.

These cloud VMs have been available before ML-specific
cloud platforms were created. The platforms make it faster
to run experiments, and easy to do 24/7 if desired. The
platforms also make it possible to scale experiments with
CPUs with many cores, powerful GPUs with a lot of RAM,
and clusters that are already configured (for example, for
distributed learning, tuning hyper-parameters in parallel,
and using deep neural networks). Users only pay for what they
use; there are no upfront costs to acquire costly hardware.

The new ML-specific cloud platforms give access to
Jupyter63 Lab environments, as web-based IDEs, on
preconfigured infrastructure. They provide cloud
VMs with all the common open source ML libraries.
TensorBoard64 web servers are usually included, for
monitoring the progress of TensorFlow-based experiments.
Cloud ML IDEs aim at making VMs available faster than
other cloud services (typically from several minutes to
seconds), and at making it more convenient to persist
work done on these (short-lived) VMs.

 Machine learning development platforms Machine learning platforms 39

4. Machine learning development platforms

Floyd Workspace running Jupyter Lab67

Floyd Jobs — Source68

40 Machine learning platforms Machine learning development platforms

4. Machine learning development platforms

Floyd Metrics — Source69

 Machine learning development platforms Machine learning platforms 41

4. Machine learning development platforms

 },
 “TrainingJobName”: “model_a”,
 “HyperParameters”: {
 “image_shape”: “3,224,224”,
 “num_layers”: “18”,
 “num_training_samples”: “15420”,
 “num_classes”: “257”,
 “mini_batch_size”: “128”,
 “epochs”: “2”,
 “learning_rate”: “0.2”,
 “use_pretrained_model”: “1”
 },
 “StoppingCondition”: {
 “MaxRuntimeInSeconds”: 360000
 },
 “InputDataConfig”: [
 {
 “ChannelName”: “train”,
 “DataSource”: {
 “S3DataSource”: {
 “S3DataType”: “S3Prefix”,
 “S3Uri”: ‘s3://{}/train/’.format(bucket),
 “S3DataDistributionType”:
“FullyReplicated”
 }
 },
 “ContentType”: “application/x-recordio”,
 “CompressionType”: “None”
 },
 {
 “ChannelName”: “validation”,
 “DataSource”: {
 “S3DataSource”: {
 “S3DataType”: “S3Prefix”,
 “S3Uri”: ‘s3://{}/validation/’.
format(bucket),
 “S3DataDistributionType”:
“FullyReplicated”
 }
 },
 “ContentType”: “application/x-recordio”,
 “CompressionType”: “None”
 }
]
}
sagemaker.create_training_job(**training_params)

Google AI Platform Notebooks70 is similar to Floyd
Workspace. It uses the platform’s Deep Learning VM
Image71 and its Cloud TPUs7² (tensor processing unit).
It has built-in Git support and integrates with Google AI
Hub, a product that helps discovery of what others have
built within the organisation (such as notebooks, pipelines
and models) that one should check before starting a new
development. Since Notebooks is a Google Cloud product,
it gives access to pre-configured/pre-installed Google
Cloud Platform libraries such as Dataflow and Dataproc
for data wrangling. GPUs can be added to or removed
from the cloud VMs used by the platform, whereas Floyd
is limited to 1 GPU per VM.

SageMaker73 is Amazon’s ML platform, which offers
a similar development environment and facilitates the
use of cluster computing for distributed model training
and distributed hyper-parameter tuning experiments.
SageMaker allows users to define model training jobs
via its Python API and a dictionary data structure where
the datasets are defined to use for training and validation,
hyper-parameter values for the training algorithm,
and resources for running the job.

training_params = \
{
 “AlgorithmSpecification”: {
 “TrainingImage”: image, # specify the
training docker image
 “TrainingInputMode”: “File”
 },
 “RoleArn”: role,
 “OutputDataConfig”: {
 “S3OutputPath”: ‘s3://{}/{}/output’.
format(bucket)
 },
 “ResourceConfig”: {
 “InstanceCount”: 1,
 “InstanceType”: “ml.p3.2xlarge”,
 “VolumeSizeInGB”: 50

42 Machine learning platforms Machine learning development platforms

4. Machine learning development platforms

Experiment tracking with Databrick’s MLflow75

The platform also provides project templates for various
ML tasks, including advanced ones such as sequence-to-
sequence learning, and reinforcement learning.

Databricks Unified Analytics Platform74 allows users to
access cluster computing on Amazon or Microsoft’s cloud
platforms. Databricks maintains Apache Spark, a leading
open source cluster-computing framework.

The platform also gives access to Databricks’ other open
source framework, MLflow, which has an experiment
tracking component. MLflow is designed to scale to large
data sets, large output files (for example, models), and large
numbers of experiments. It supports launching multiple
runs in parallel (for example, for hyperparameter tuning)
and executing individual runs on Spark. It can take input
from, and write output to, distributed storage systems.

 Machine learning development platforms Machine learning platforms 43

4. Machine learning development platforms

ADDING FEATURISATION TO
MACHINE LEARNING PIPELINES
There are cases where the full numerical representation
of inputs is not readily available (as it would be for text or
image inputs), but needs to be computed before it can be
passed to a model. For a customer input, for instance,
who would be identified by an id, some features would
be already stored in database (for example, date of birth),
and others would require computation. This would be
the case for behavioural features that describe how
the customer interacted with the product over a certain
period of time: they would be computed by querying and
aggregating data that logged customer interactions with
the product. If, by nature, features do not change too often,
they could be computed in batches. But in ML use cases
such as UberEats’ Expected Time of Delivery, we could have
“hot” features that would change rapidly and would need to
be computed in real-time; for instance, the aggregate
delivery time of a given restaurant over the last X minutes.
For simplicity, real-time featurisation for now has not been
considered, focusing instead on batch featurisation.

The pipeline is getting more complex, as it now involves a
“featuriser” that accesses and queries various databases,
and performs various aggregations and treatments on the
queried data. Similarly to the other components of the ML
pipeline, this featuriser has parameters (such as the number
of minutes X in the example above), which have an impact on
the performance of the whole pipeline. One difference with
other data preparation components is that featurisation
typically feeds from multiple data sources.

Featurising is typically done using different software libraries
and computing environments than for pre-processing and
modelling. When using platforms and software as a service,
the featurisation could be done with a data wrangling tool
such as Trifacta76, and the modelling with one of the ML
development platforms previously discussed.

Pipelines need to be executed by an “orchestrator”, which
would give commands to the featuriser and to the model
builder, and connect the output of one to the input of the
other. A common practice is to save featurised data to (and
read from) Amazon S3, Google Cloud Storage, or a similar
service. The orchestrator could be a human, but to update
models frequently, or to tune (hyper-)parameters of the
featuriser and of the modeller jointly, the orchestrator will
need to be a computer program. This will make it possible
to call the orchestrator programmatically, and to use
a scheduler to update models at a certain frequency.
Infrastructure is also needed to run the orchestrator.
If we use our own, our ML solution will not be 100% as a
service any more, even though it would be using platforms
as a service for data wrangling and ML development.

An alternative is to use a single platform as a service
to define, orchestrate and run full pipelines. Google AI
Platform allows users to do that: creating a featuriser
that uses Google Cloud data products such as Dataprep77
(an integrated partner service provided by Trifacta),
Dataflow78 (a simplified stream and batch data processing
tool), Dataproc (a managed way to run Spark) and
BigQuery79 (a serverless cloud data warehouse), and to
define a training application80 based on TensorFlow or
built-in algorithms (for example XGBoost).

44 Machine learning platforms Machine learning development platforms

4. Machine learning development platforms

Google Cloud Platform, AI and machine learning products, AI Platform81

 Machine learning development platforms Machine learning platforms 45

4. Machine learning development platforms

Another option to define, orchestrate and run full ML
pipelines in the same environment, is to use Spark. It is a
popular choice for processing important volumes of data,
and it includes a machine learning library (MLlib).

ML pipelines can also be created with open source software
exclusively, and run on cloud compute platforms. Steps
of the pipeline could be defined and executed in different
Docker containers (for example, the featurisation could be
done with Pandas in one container, and the modelling with
scikit-learn or TensorFlow in another container).

Kubernetes8² is one of the most popular open source
container orchestration systems among ML practitioners.

 – Kubeflow83 and Seldon Core84 are open source tools
that allow users to describe ML pipelines and turn
them into Kubernetes clustered applications. This can
be done in a local environment, and the application can
be run on a Kubernetes cluster, which could be
installed on-premise or provided in a cloud platform —
Google Kubernetes Engine85 for instance, which is
used by Google AI Platform, or Azure Kubernetes
Service86, or Amazon EKS87. Amazon also provides an
alternative to Kubernetes with Fargate88 and ECS89

 – Apache Airflow90 is another open source workflow
management tool, originally developed by Airbnb,
which can serve as orchestrator of ML pipelines.
Airflow has become a popular way to coordinate
the execution of general IT tasks, including ML ones,
and it also integrates with Kubernetes

 Contents

48 Machine learning deployment platforms

48 Packaging models

49 Case study: serving predictions
 with Flask on Floyd

50 Case study: A/B testing models in
 production with Amazon SageMaker

51 Serverless model serving platforms

52 Example model management
 platform: Seldon Deploy

46 Machine learning platforms Machine learning deployment platforms

5.
Machine learning
deployment
platforms

 Machine learning deployment platforms Machine learning platforms 47

48 Machine learning platforms Machine learning deployment platforms

Assume that a model has been built and
evaluated on machine A (using an ML
development platform, or maybe an a
programming environment on the individual’s
own machine). The next step is to use this
model for predictions in a production app, or
in a sandbox that mimics a production setting
and allows to further test the model. This will
be on a different machine, machine B.

Firstly, the two variants to packaging models so that they
can be “moved” from A to B, when machine B is a server
that we control, are outlined, followed by a discussion about
another way that can be used when B is the end-user’s
device or a mobile device (in an IoT application).

Client/server architectures are the focus of the rest of this
section. Deployment platforms include model servers that
turn packaged models into production-ready http APIs.
Presented here are two deployment case studies, with
sample code: one where the Floyd platform is used with
the Flask open source serving library to deploy a model
to production, and the other one where the SageMaker
platform is used to deploy and A/B test models in
production. Both platforms provide cloud VMs that
serve predictions. Another way to serve models, called
“serverless”, where VMs are abstracted away, is also
introduced. Finally, this section presents a platform with
interesting features for managing models in production:
Seldon Deploy.

“It’s hard to understate how nascent the field of production
in machine learning is, and that means the tools supporting
this ecosystem are only starting to be fully developed.”91

PACKAGING MODELS

Saving model object and programming environment
One approach to packaging a model is to persist with the
model object that lives in the memory of the programming
environment that created it. This is usually quite
straightforward. In Python for example, an object can
be saved to a file by using the Pickle or the Joblib library.
For neural networks, the preferred method consists in
saving the model structure to JSON format, and its
weights to an HDF file.

Loading these files on machine B requires that A and B both
use the same libraries. One way to ensure that is to create a
requirements file, which simply lists the names and
versions of all the libraries in machine A’s Python
environment,
and to use this file to recreate the same environment on
machine B. This is the approach used by MLflow’s Pyfunc
format9² for model persistence, which allows users to load
models created with H2O, Keras, PyTorch, Scikit-learn,
MLlib or TensorFlow, and to package them for deployment
to Microsoft Azure ML or Amazon SageMaker.

Another, more general approach, is to use a programming
environment that lives in a Docker container on machine A.
Thus a model would be “packaged” by saving it to file(s) in
the same way as discussed before, along with the Docker
image associated to the Docker container. This would
capture non-Python dependencies, such as Java libraries.
There would be no need to recreate the environment on
machine B, as it would already exist in the Docker image.

However, these solutions assume that organisations will
be making predictions on a machine that can run Python,
or Docker. What if predictions need to be made on a small
device where we cannot expect this to be true — on a
smartphone for instance, or on an IoT device?

5. Machine learning
 deployment platforms

 Machine learning deployment platforms Machine learning platforms 49

Exporting neural network models for client-side
(a.k.a. on-device) predictions
Apple uses the Core ML format to load neural network
models in iOS applications. TensorFlow has its own
SavedModel format, and the “Lite” version of the framework
may be installed on a small device. Amazon SageMaker
Neo93 is a service and open source project that can ingest
models from many different ML libraries, and that allows
them to be optimised them for the specific processor on
which predictions will be run, or to be implement on a
field-programmable gate array (FPGA).

AWS IoT Greengrass94 is another Amazon platform, which
is useful for the deployment of models to the edge, for
example, for pushing new models to a fleet of IoT devices,
so they can be used locally (and without internet
connectivity). Model versions can be easily updated or
rolled back. Microsoft IoT Edge95 has a similar offering.

Cross-framework model export formats
Some of the most common ML model types can be
exported to cross-framework, open formats such as
PMML96 and PFA97. One use case would be to save a
Scikit-learn model to PMML and to load it in Spark to
perform batch predictions on clusters of machines
(Spark is particularly efficient at processing large
volumes of data in parallel, which could be the case if
predictions on many inputs are requested in one go).

ONNX98 is a cross-framework format for neural networks.
One potential use case would be to experiment with
PyTorch on machine A, and to make predictions with
TensorFlow Lite (on mobile or embedded devices)
or TensorFlow.js (in the browser) on machine B.

CASE STUDY: SERVING PREDICTIONS
WITH FLASK ON FLOYD
For most applications, the best practice to integrate
predictions is to use a client/server architecture, where
predictions are computed on dedicated infrastructure
and are served via an http API. This allows separation
of concerns, and in practice, it makes it possible for data
scientists to use the best language and tools for their ML
needs, and app developers to use the best language and
tools to create their application. Platforms can be useful
to provide infrastructure to run predictions, at scale.

Some of the platforms mentioned for ML development
provide model serving options. Floyd Serve uses the Flask
open source API server, which allows to run arbitrary
Python code when API requests are received. Here is
an example Flask app, whose code would be written in
an app.py file and would load a Scikit-learn model saved
with Joblib:

from flask import Flask, request, jsonify
from joblib import load
app = Flask(__name__)
model = load(‘models/model1.joblib’)
@app.route(‘/’, methods=[‘POST’])
def predict(path):
 text=request.get_json()[‘input’]
 return jsonify(input=text, prediction=model.

predict_proba([text]))

An instruction is then sent to Floyd
to serve a new API, from the CLI:

$ floyd run --mode serve

This would upload the contents of the local directory
to Floyd (code, Python requirements file, model files),
which would start and provide a VM, then start a Flask
application based on the contents of app.py. VM uptime
is then paid for.

Note that BigML also allows to “APIfy” any custom function,
as long as it is written in WhizzML.

5. Machine learning deployment platforms

50 Machine learning platforms Machine learning deployment platforms

CASE STUDY: A/B TESTING MODELS IN
PRODUCTION WITH AMAZON SAGEMAKER
Amazon SageMaker can also directly make models
available as http APIs. It is actually possible to attach
several models to the same API endpoint, with different
weights and different instance configurations. This allows
the user to implement strategies that test and compare
different models in production: canary testing, to validate
on a small fraction of end-users that a new model does not
have a negative impact, and A/B testing, to see which out
of two models has the most positive impact. It also allows
for fast model update and rollback.

To pick up from the model_a training
job that was defined in section 4:

info = sagemaker.describe_training_
job(TrainingJobName=’model_a’)
sagemaker.create_model(ModelName=’model_a’,
 ExecutionRoleArn=sagemaker.get_execution_role(),
 PrimaryContainer={‘Image’: image, # docker image
 ‘ModelDataUrl’: info[‘ModelArtifacts’]
[‘S3ModelArtifacts’]})

Assuming that model_b has been defined similarly, an
endpoint configuration can be created with two production
variants (A and B) that have equal weights99:

endpoint_config_response = sagemaker.create_
endpoint_config(
 EndpointConfigName = ‘my_endpoint’,
 ProductionVariants = [
 {
 ‘InstanceType’: ‘ml.m4.xlarge’,
 ‘InitialInstanceCount’: 1,
 ‘ModelName’: ‘model_a’,
 ‘VariantName’: ‘Model-A’,
 ‘InitialVariantWeight’: 1
 },
 {
 ‘InstanceType’: ‘ml.m4.xlarge’,
 ‘InitialInstanceCount’: 1,
 ‘ModelName’: ‘model_b’,
 ‘VariantName’: ‘Model-B’,
 ‘InitialVariantWeight’: 1
 }

])

CloudWatch100 provides API metrics out-of-the-box. The
weights defined above can be updated programmatically
(UpdateEndpointWeightAndCapacities101 API) or via the
AWS Console. CloudWatch would allow us to monitor
how traffic gets routed.

5. Machine learning deployment platforms

Evolution of traffic when changing B’s weight to 9 (instead of 1), monitored in CloudWatch102

 Machine learning deployment platforms Machine learning platforms 51

5. Machine learning deployment platforms

SERVERLESS MODEL SERVING PLATFORMS
Algorithmia103 is a cloud platform focused on model
serving, that one may call “serverless”: it focuses on
turning code into APIs and hides away the fact that
the code is run on server VMs (which requires scaling
of VMs up and down automatically, based on traffic).

This translates into a business model where you pay
for compute time, and not for VM uptime.

Here are some other advantages
of the Algorithmia platform:

 – API monitoring (similar to CloudWatch)

 – The “Marketplace”, where you can find pre-trained
models made by others (for example sentiment
analysis), or sell access to your own models

 – The “ML portfolio”, which is a catalogue of all your
models that makes it easier to make models
available to everyone in your organisation. This is
interesting for organisations that have many model
authors who produce many models: it allows users
to keep track of where and when they are being used,
and allows tagging, categorisation, and search. The
ML portfolio is similar in spirit to Google’s AI Hub

API monitoring on Algorithmia104

52 Machine learning platforms Machine learning deployment platforms

Amazon Lambda105 and Google Cloud Functions106 are
two other serverless platforms, which turn functions into
auto-scaling APIs. The process remains the same: code
and dependencies are packaged into a .zip archive, with
a single entry point function. Lambda applications can be
written with Chalice, a Python library that feels very similar
to Flask. Note that these platforms can have limitations on
the size of the archive, duration of function execution and
available memory. They can also be limited to CPU usage.

Google Cloud Run107 is a serverless containers as a
service product that removes some of the limitations
found in Google Cloud Functions. It supports any
language and libraries as long as developers can package
the prediction app into a Docker image for Linux (x86-64),
and GPUs are available. Cloud Run is built on the
Knative108 open-source project, enabling portability across
platforms. Knative uses clusters of Docker containers that
are orchestrated by Kubernetes. The product is not
ML-specific, but makes it very easy to set up prediction
APIs that auto-scale and has the advantage of charging
only for time spent processing requests.

EXAMPLE MODEL MANAGEMENT
PLATFORM: SELDON DEPLOY
Seldon Deploy109 is a serving platform in private beta, with a
user interface that makes it easier to manage several models
in production, to test and to update them. It offers A/B testing,
model ensembling, and it implements a multi-armed bandit
algorithm that intelligently directs traffic to models: it learns
about each model’s performance in production and focuses
on the most promising ones (exploration/exploitation
trade-off). Seldon Deploy also gives access to audit trails
(saving which model a prediction came from), model
explanations, outlier detection (to trigger fallback modes),
and bias detection.

5. Machine learning deployment platforms

 Machine learning deployment platforms Machine learning platforms 53

5. Machine learning deployment platforms

Defining models to test in production in Seldon Deploy110

 Contents

56 Choosing machine learning platforms
 and filling their gaps

57 Evaluating predictions

57 Preparing prediction APIs for
 usage in production

58 Performance monitoring and model
 lifecycle management

60 Example architecture of machine learning
 system components

61 Finding the right type of platform to use

64 Platform selection criteria

65 Scaling to many use cases:
 building proprietary platforms

54 Machine learning platforms Choosing	machine	learning	platforms	and	filling	the	gaps

6.
Choosing
machine learning
platforms and
filling the gaps

	 Choosing	machine	learning	platforms	and	filling	the	gaps Machine learning platforms 55

56 Machine learning platforms Choosing	machine	learning	platforms	and	filling	the	gaps

Whatever type of ML platform is chosen, it’s
important to start with a definition of how to
evaluate the planned ML system. As well as
measuring prediction accuracy, evaluation
of short-term and long-term impact via
application-specific performance metrics,
and system metrics such as lag and
throughput is desirable. This will allow
comparison of predictive models, but also
to continuously monitor performance in
production, in order to check if the models
behave well through time and that they keep
having a positive impact on the application.

Assuming one or several (baseline) models are already
available as APIs, but that they have not yet been integrated
into the application, this report will discuss how they can be
evaluated on a test dataset, how to prepare their usage in
production with the creation of a ‘front-end’, and how
to implement a model performance ‘monitor’ with the
creation of a database for production data, a ‘ground
truth’ API, and a dashboard.

We would monitor models’ performance on production
data, and decide whether to integrate one in the application
accordingly. When a new model version becomes available,
API traffic would be moved progressively to the new
model’s API, via the front-end. This would be done for
an increasing number of end-users, while monitoring
performance and checking that the new model is not
breaking anything.

The report moves on to present a recap of all the components
to be found in real-world ML systems, via an example
architecture that shows how they are connected. Ready-made
ML platforms do not systematically provide all of the
components needed in real-world ML systems (such as
front-end and monitor). However, these platforms can greatly
accelerate the creation of prediction APIs (or of packaged
models that are ready to be deployed as APIs). Advice is
provided to identify the right type of platform to use, based
on the nature of the ML use case, and what to complement
it with. The report also provides some selection criteria to
help determine the best platform for your organisation.

Finally, the report discusses how to scale your usage of ML
to many use cases, and how to streamline the creation of
several new ML systems by building your own platform.

6. Choosing machine learning
 platforms and filling the gaps

	 Choosing	machine	learning	platforms	and	filling	the	gaps Machine learning platforms 57

EVALUATING PREDICTIONS
There are two important objectives behind model
evaluation: comparing models, and deciding whether
it is safe to integrate a model into an application.

Evaluation can be performed on a predetermined set of test
cases, for which it is known what the prediction should be
— called the ‘ground truth’. For each test case, the error
between the prediction and the ground truth is computed.
Individual predictions, or the error distribution, could also
be examined, or errors could be aggregated. This can
be done in an evaluation program that has access to the
test set’s ground truth, takes a predictions file in input,
and returns performance metrics based on aggregates
of the prediction errors.

The evaluation program can be used on predictions made by
a baseline model, to provide a reference. Baseline models are
usually heuristics that are based on input characteristics —
for example, features. They can be hand-crafted rule sets; for
instance, a simple heuristic for churn prediction would be to
say that if a customer logged in less than three times in the
last 30 days, they are likely to churn.

The next step towards deciding if a model can be integrated
into an application is to use the model’s API on the inputs
encountered in production (called ‘production data’), in a
production-like setting. This could be done with the API
that exposes our baseline model, but it requires some
preparation first.

PREPARING PREDICTION APIS
FOR USAGE IN PRODUCTION
When designing a prediction API, the decision needs to be
made as to what the API should take as input. For example,
when making predictions about customers, should the
input be the full feature representation of the customer
or just the customer id? In the latter case, it would need
to create a featurisation microservice that would extract
information about inputs based on their ids.

It is then fairly easy to deploy a (baseline) model as an
API with a serverless platform that runs on the cloud
or on a local computer.

Refining	the	API	exposed	to	the	client	via	a	front-end
It would be useful to create a front-end microservice, on
top of this API, that would send its inputs and outputs for
storage in a database. If the baseline is a hand-crafted
decision tree, the path through the tree could also be
saved, as an explanation of the baseline prediction. The
front-end could refine its output by providing an anomaly
score for the input (via a simple anomaly detector such as
an isolation forest), which would allow the app that calls
the front-end to trigger a fallback mode when encountering
anomalous inputs.

When a new model trained with a machine learning
algorithm would be available, the front-end could query
predictions from this new model, use a blackbox model
explainer (for example, SHAP or Influence Functions) to
provide a prediction explanation similar to those of Indico’s
API111, and send results for storage to the production
database. However, the front-end would need to keep
returning predictions made by the old model.

6. Choosing machine learning platforms and filling the gaps

58 Machine learning platforms Choosing	machine	learning	platforms	and	filling	the	gaps

PERFORMANCE MONITORING AND
MODEL LIFECYCLE MANAGEMENT

Storing production inputs and predictions
for several model versions, via the front-end
Evaluations can be taken further by testing and comparing
models on production data, and checking the behaviour of
models through time. Inputs would be saved to database by
the front-end along with predicted outputs. We would need
to also obtain ground truths, in order to compute prediction
errors and performance metrics. There are two ways this
can be done:

 – Observing user behaviour: the app developer observes
whether a past prediction was correct or incorrect,
or the amount of error, by observing user behaviour.
For example, for churn prediction, they would observe
that the user proceeded to cancel their subscription;
for price prediction, they would observe transactions on
a marketplace. Also, some apps use feedback buttons
to invite end-users to share if a prediction was correct
or not (Google Mail’s Priority Inbox for example).

 – Provide ground truths: examine a subset of production
data (this would be the case for spam detection for
instance) to establish ground truths. There are dedicated
services for outsourcing this (for example, Figure Eight
and Google Data Labeling Service).

This evaluation on production data should be done
continuously. The front-end would return only one
prediction, but it could send production inputs to several
models to be tested, which would allow performance
metrics to be plotted over time for all of these models.

Ground truth API and performance monitor
Computing and monitoring performance metrics requires
a database to store production inputs, predictions and
ground truths, and an API for developers to send ground
truths. The performance monitor would consist of a
program that reads from that database, and a dashboard
that shows the metrics computed by that program.

It could be augmented with a data monitor that has
visualisation widgets to view distributions on production
data — to make sure they are as expected, or to detect drift.

In addition to monitoring, the ground truth API can be
useful to provide new training data to update models.
Vertical and semi-specialised platforms usually provide
this, and they may provide performance monitoring.
However, it is recommended to build your own ground
truth API and monitor, so as to compare competing
platforms on production data.

Testing new models on production inputs
If a new candidate model seems to be performing better
than the current one, it is possible to test its actual impact
on the application by having the front-end return this
model’s predictions for a small fraction of our application’s
end-users (canary testing). This requires implementation
of application-specific performance metrics. Test users
could be taken from a list, or they could be chosen by one
of their attributes, by their geolocation, or purely randomly.
When monitoring performance and getting confident that
the new model is not breaking anything, developers can
gradually increase the proportion of test users and perform
an A/B test to further compare the new model and the old
model. If the new model is confirmed to be better, the
front-end would simply “replace” the old model by always
returning the new model’s prediction. If the new model
ends up breaking things, it is also possible to implement
rollback via the front-end.

This report saw in Section 5 that canary and A/B testing
could be done with SageMaker or Seldon Deploy.
TensorFlow Serving112 is an open source model server
library that can be used in Kubeflow pipelines and that
provides part of a solution, with the ability to assign labels
to model versions (for example ‘canary’ and ‘stable’).
However, traffic still needs to be directed to them,
which can be done by the front-end micro-service.

6. Choosing machine learning platforms and filling the gaps

	 Choosing	machine	learning	platforms	and	filling	the	gaps Machine learning platforms 59

6. Choosing machine learning platforms and filling the gaps

Monitor

Data
labeller

Featuriser

Evaluator

Ground-truth
collector

Server

Databases

Front-end

Client
(Entry point)

Model
file

Feat.
input

InputPrediction

Models
predictions

Raw
input

Raw inputs and
ground-truths

Perf. value

Perf. value

Feat. train
and val sets

Raw
datasets

Trained
model

Feat.
datasets

Test set
and predictionsInputs

Prod. data
and predictions

Prod. data and
predictions

Inputs and
ground-truth

Prod. inputs
and ground-truth

Inputs and
optional predictionsFeat. input

ML System Architecture

Diagram legend

Data

Component
that applies
ML

(Micro) Service

Other component

Orchestrator
(Entry point)

Model
builder

60 Machine learning platforms Choosing	machine	learning	platforms	and	filling	the	gaps

EXAMPLE ARCHITECTURE OF MACHINE
LEARNING SYSTEM COMPONENTS
The following diagram is proposed to visualise the
components of a typical ML system and how they
are connected to each other.

The components in light grey would already exist prior to
the creation of the ML system. The others, in dark grey, are
new components to be built. Those that apply ML models
are represented in purple.
The squares are used to represent components that
are expected to provide micro-services, accessed via
representational state transfer (REST) APIs, that would
typically run on serverless platforms.

There are two ‘entry points’ to the ML system: the client
requesting prediction(s), and the orchestrator creating/
updating models. The client represents the application
used by the end-user who will be impacted by the ML
system. The orchestrator would usually be a program
called by a scheduler — so that models could be updated
periodically, for example every week — or called via an API
so that it could be part of a continuous integration /
continuous delivery pipeline.

A more detailed view of the steps in the ML pipeline
executed by the orchestrator:

 – Extract - transform - load and split (raw) data into
training, validation, test sets

 – Send training/validation/test sets for featurisation (if any)

 – Prepare featurised training/validation/test sets

 – Augment training data (for example rotate/flip/
 crop images)

 – Pre-process training/validation/test sets

 – Data cleaning/sanitisation (so that it can be
 safely used for modelling or predicting)

 – Problem-specific preparation (for example,
 de-saturate and resize images)

 – Send URIs of prepared train/validation sets,
along with metric to optimise, to model builder

 – Get optimal model, apply to test set, and send
predictions to evaluator

 – Get performance value and decide if model
is OK to be pushed to server (for canary-testing
on production data, for instance)

The model builder is in charge of providing an optimal
model. For this, it trains various models on the training
set and evaluates them on the validation set, with the
given metric, in order to assess optimality. Note that this
is identical to the OptiML example explored earlier in this
report; BigML automatically makes the model available
via its API, but with other platforms we would typically
package the model, save it as a file, and have the server
load that file. The front-end requests predictions from all
models that were successfully tested by the orchestrator,
when it receives new production inputs, and it decides
which prediction to return to the client.

The owner of the ML system and the owner of the
client application would be accessing the monitor’s
user interface and dashboard on a regular basis.

Domain experts may be expected to access a data
labeller, where they would be shown inputs and would
be asked to label them. These labels would be stored
in a database, and would then be available to the
orchestrator for usage in training/validation/test data.
The choice of which inputs to present for labelling could
be made manually, or programmed in the orchestrator
(for instance, looking at production inputs where the
model was the least confident).

6. Choosing machine learning platforms and filling the gaps

	 Choosing	machine	learning	platforms	and	filling	the	gaps Machine learning platforms 61

FINDING THE RIGHT TYPE OF PLATFORM TO USE
The choice of the best platform to create a prediction API to
integrate into an application depends on the nature of the ML
use case. Are other organisations likely to have the same
prediction problem? Does the resolution of this problem
require data that is unique to the company? If not (for
example, language detection), one should turn to pre-trained
models as a service. Otherwise, if tackling an industry-wide
problem (for example, churn prediction), a vertical platform
may provide a solution from which custom models can be
created, once data sources have been connected.

If a vertical platform cannot be found for the intended
ML use case, start by considering the nature of the inputs
to the ML problem:

 – If dealing with image or text inputs, it may be enough to
use language or vision platforms as long as the nature
of inputs treated by the platform’s pre-trained models is
similar in nature

 – A data collection strategy, a data augmentation and
 processing pipeline based on the knowledge of the
 application domain and of the problem should be
 implemented. This ‘data-preparation pipeline’ would
 be built outside of the language/vision platform, and
 executed before sending data to it. The combination
 of a problem-specific data-preparation pipeline and
 of a semi-specialised ML platform would constitute a
 vertical ML platform. Besides, data labelling platforms
 could also be helpful to collect output data

 – In the case where all the data cannot be collected for
 the ML use case, but that data lives on the end-users’
 devices, client-side model training will be needed.
 Examples include sensitive data such as fingerprint data
 (used by Touch ID on iOS) and text messages data (used
 by Smart Reply on Android). There are a growing
 number of open source libraries that allow for federated
 learning and privacy-preserving ML, such as TensorFlow
 Privacy113, TensorFlow Federated114 and PySyft115, but
 none of the platforms that we are aware of directly
 leverages these technologies. They might however be
 used in the code that is deployed via edge platforms

 – When dealing with input representations that are
unique to an organisation (for example, variables
whose meaning only makes sense for the company),
a modelling pipeline will need to be built, in addition
to a data-preparation pipeline as discussed above.
This can be done with an ML development platform

 – If starting from scratch, consider training domain
 experts in the basics of ML and having them start
 a project on a high-level MLaaS model development
 platform, in order to assess feasibility. If needed, have
 someone with more experience provide assistance.
 Let them pick the platform that they prefer and that
 allows them to get started the fastest, but pay
 attention to the ability to export work before investing
 too much time or money in that platform

 – If a modelling pipeline creation has already started
 with open source libraries, ML studios and cloud IDEs
 may be a preferred choice. They can help to be more
 efficient in ML experiments

 – When results are good enough, models can be turned
 into APIs and tested on production data. Deployment
 platforms will help, using the model APIs in the
 front-end, and monitoring performance. Also consider
 API system metrics to check how the API scales with
 traffic. If the solution does not use a serverless
 platform, monitoring traffic spikes and latency can be
 useful to adjust the parameters of scaling the
 solution; for instance, provision of a few more serving
 instances may be needed in order to deal with
 unexpected traffic spikes without affecting latency

 – All experimentation and deployment platforms allow
 for batch training, batch featurisation, and batch or
 real-time predictions. Some platforms are flexible
 enough to allow for online learning of models: new
 input-output pairs can be sent via an API request and
 passed to the model to learn from and update itself —
 assuming that it implements an online learning
 algorithm, for instance the partial_fit116 method found
 in scikit-learn). However, most platforms are not made
 for ML use cases that require real-time featurisation

6. Choosing machine learning platforms and filling the gaps

62 Machine learning platforms Choosing	machine	learning	platforms	and	filling	the	gaps

6. Choosing machine learning platforms and filling the gaps

Fix domain of application, types of inputs and outputs
Add domain-specific components:

input featurisation (+ full pipeline orchestration)
and modelling pipeline templates

Fix prediction problem
Add problem-specific components:

complete data preparation and modelling pipeline configurations

Feed input/output data

Semi-specialised platform

Vertical platform

Pre-trained models as a service

Model development and deployment platform

As additional help to identify the right type of ML platform to use to support ML efforts,
the diagram above shows each platform type and visualises how they relate to each other.

	 Choosing	machine	learning	platforms	and	filling	the	gaps Machine learning platforms 63

6. Choosing machine learning platforms and filling the gaps

Deployment Development Semi-specialised Vertical Pre-trained

Input Any Any
Fixed (in ready-

made platforms:
image, video, text)

Fixed Fixed

Built-in
featurisation No No Yes Yes Yes

Output Any Any Any among fixed
type(s) of output Fixed Fixed

Model
customisation Yes

Yes (using
available

algorithms)

Via configuration
of ML pipeline,

and via training/
validation data

Via training/
validation data No

Live monitoring System metrics N/A Prediction accuracy
metrics

Problem-specific
business metrics No

Platform types are presented in increasing level of
abstraction: it will be faster to integrate ML in an
application with the use of higher-level platforms, such
as pre-trained models as a service or a vertical platform;
however, you reduce the scope of problems that can be
tackled, and you lose flexibility, compared to using a
model development and deployment platform.

When the nature of the input is fixed, platforms are able
to provide built-in featurisation (via manually engineered
features or via pre-trained models, thus providing transfer
learning). Outputs are also increasingly constrained from
left to right. Their type would be fixed in semi-specialised
platforms, depending on the type of ML tasks that can be
tackled (for example, classification or regression), and their
nature would be fixed in vertical and pre-trained platforms,
where the prediction tasks are fixed.

Even though the nature of the output to predict would be fixed
in a vertical platform, custom models would be created, based
on the input-output pairs that are sent to the ground truth
collector. Further to the left of the table model customisation
is increased: semi-specialised platforms may allow us to
configure parts of the ML pipeline, and model development
platforms let us customise it down to the choice of
modelling algorithms and hyper-parameters to use.

Pre-trained models as a service platforms don’t allow for
model customisation. For this reason, there is no ground
truth collector, hence no live monitoring of performance
on production data. Only some semi-specialised and
vertical platforms provide model performance monitoring.
Deployment platforms are limited to monitoring of system
metrics. ‘N/A’ is marked for ‘not applicable’ in the
development column, since these platforms
don’t get to see production data.

The characteristics of the different platform types are summarised in the table above.

64 Machine learning platforms Choosing	machine	learning	platforms	and	filling	the	gaps

PLATFORM SELECTION CRITERIA
ML systems are complex by nature, so it is recommended
to use the simplest and highest level tools when starting
ML efforts. Even if the user ultimately wants more
flexibility, they can be useful to create an initial baseline,
and can maximise the chances of success of pilot
programmes. For example, when looking for a Cloud ML
IDE, start simple with a platform such as Floyd. If the
application ends up outgrowing it, it can still be switched
to products such as SageMaker and leverage distributed
learning, for instance. More comprehensive products are
attractive because of the number of options they offer,
but an assessment must be made as to whether the
potential gains provided by these options would warrant
the additional complexity for the team.

Using high-level platforms as a service for model
development and deployment means there is less to
configure and maintain. It also means more automation.
Starting with an AutoML and auto-scaling solution helps
get your priorities right: design and implement a
performance metric that makes sense for the application,
create training, validation, and test sets, work on the data,
and work on a strategy to deploy predictions to end-users.

When researching platforms, one way to go beyond
marketing material is to browse the developer portal
and to go through the API documentation. Have a look
at demo videos or screenshots of the UI, and compare
functionalities with that of the API. Go into details such
as the type of ML tasks, inputs, or data sources that are
supported. For example, when looking at language
platforms, check which languages are supported.

If the result is a list of platforms that look equivalent, just
test them out and see which feels best for the application.
At this stage, it is best to minimise commitment — does
the platform have a free tier or a free trial, to start testing
it instantly with a Kaggle dataset? When ready to consider
paying or to use your own data, pay closer attention to
service level agreements (SLAs), constraints, limitations,
terms and conditions. In particular, when using semi-
specialised and vertical platforms, make sure to be
comfortable with how the platform is using data. Can
data and models be exported? Who owns them? Could the
platform vendor use your data to train models themselves?
What would they be able to do with these models? What
would happen to your models if the platform vendor
stopped offering access to the platform?

A platform’s pricing structure may depend on which
compute is used — your own, or cloud CPU/GPU/FPGA/
ASICs. If using the platform on own compute, pricing could
be based on the characteristics of the machines where the
platform is installed. If it is a platform in the cloud, pricing
could be based on the number of predictions that will be
made, on the number of models to be trained, on the
volume of data used, or on compute time. A framework
such as the Machine Learning Canvas117 can help estimate
these as it helps describe the ML system in detail, the data it
will learn from, and how predictions will be used. These
numbers will also be useful to anticipate the best option in
the long term to create models (on-premise or cloud-based),
the best option to make predictions (client-side or on-
premise or cloud-based), and when to switch.

6. Choosing machine learning platforms and filling the gaps

	 Choosing	machine	learning	platforms	and	filling	the	gaps Machine learning platforms 65

6. Choosing machine learning platforms and filling the gaps

SCALING TO MANY USE CASES: BUILDING
PROPRIETARY PLATFORMS
In his AI Transformation Playbook118, Andrew Ng lists five
steps to transform larger enterprises (with a market
capitalisation from $500M to $500B). The first one is to
execute pilot ML projects to gain momentum (which we
suggest to do with the help of ready-made ML platforms).
The second step is to build an in-house AI team. One of
this team’s responsibilities is to “develop company-wide
platforms that are useful to multiple divisions/business
units and are unlikely to be developed by an individual
division”. Uber, in particular, is famous for its internal
MLaaS platform Michelangelo119.

The objective of such a platform is to make it easier for
all divisions in the organisation to experiment with new
ML use cases and to develop new ML systems. An
internal ‘hub’ or ‘portfolio’ (similar to those of Google AI
Platform and Algorithmia) is a step towards this: it
centralises ML assets (datasets, pipelines, feature stores,
configurations, trained models, and APIs) and makes
them accessible across the organisation.

Many components of an ML system can be reused
from project to project:

 – Databases: if the ML inputs for a new system are of the
same nature as for previous systems, we would just
need to add a new column to the ML input tables.
Otherwise, new tables would need to created

 – The evaluator, model builder, and server do not need to
change. Models could be tagged with the name of the
system they belong to, in the file system in which they
are saved. This would allow the server to know which
models are available for each ML system in production

 – The ground truth collector would essentially remain
the same, but it would need to know in which database
and table to store ground truths it receives; it could be
adapted so that this information would be passed to it,
or it could infer it from the name of the ML output

 – Monitor: users would want to reuse the monitor and its
widgets, but would need it to be aware of the new use
case and to use its performance metrics. This might
be achieved with a configuration file for each use case

 – The orchestrator’s workflow/pipeline could also be made
configurable; users would specify in its configuration
where to get data from, how to split data, what to pass
to the model builder (for example, which algorithms to
use for pre-processing and modelling, which range of
hyper-parameters to search), and which performance
criterion to use for model deployment. Configurations
could be reused across ML systems, and adapted

 – The front-end can be quite specific to the ML use case, in
the input that it takes and the output it returns. For
instance, if there are many concepts to detect in an input
image, then users might want to serve requests to get the
top K concepts only. However, the saving of production
inputs and predictions, and the model management
features (test, update, rollback) would remain very similar.
This could motivate splitting the front-end into two
components: a “post-processor” applied to the raw
prediction, and a “model manager”. The latter could be
reused across use cases and would just need to know
where to store predictions (which database/table)

 – Featuriser:

 – If the ML inputs of the new system are different
from those in previous systems, a new featuriser
should be created. One of the key functionalities of
Michelangelo is its Feature Store, to make it easier
to reuse previously created features and to share
work across the organisation’s teams

 – If the inputs are the same (the company’s
customers, for example), the previous featuriser
could be reused, and we could think of the ML
platform as a semi-specialised one. If the previous
ML system used a neural network model, the
featuriser could be augmented with one of the last
hidden layers of that network, which would allow for
transfer learning across use cases

66 Machine learning platforms Choosing	machine	learning	platforms	and	filling	the	gaps

Conclusions

	 Choosing	machine	learning	platforms	and	filling	the	gaps Machine learning platforms 67

68 Machine Learning Platforms Conclusion

They can also help embed good engineering
practices through documentation,
versioning, collaboration and visualisations
that make monitoring, audit, measurement
and improvement easier. These are part of
responsible ML development. Some also
include libraries that are explicitly focused
on responsible ML development, such as for
evaluating bias or providing explanations.

These types of functions are expected to
expand and become more widely available.
See Digital Catapult’s ‘From What to How.
An Overview of AI Ethics Tools, Methods
and Research to Translate Principles into
Practices’1²0 for more detail. It may be more
cost-effective and easier to use third-party
functions than to develop them all in-house.

Conclusions

Machine learning platforms
promise to help make software
or data science teams more
productive, and free up time to
spend on tasks that are as
important for the success of ML
projects as the actual ML: tasks
such as gathering data,
designing the right performance
metrics, and working on the
deployment strategy.

 Footnotes Machine Learning Platforms 69

However, the choice of ML platforms is wide,
and can be daunting. The ML platforms that
are available and the features that they offer
are subject to rapid change. This report has
therefore chosen to highlight different types
of ML platform, with examples given for
illustration, rather than providing a snapshot
of the whole current landscape. It is hoped
that this will help organisations to identify
whether to use a third-party platform, which
is the right sort of platform for their needs,
and how to build upon existing platforms to
create their own, that will support scaling up
to many ML use cases.

We have also provided some advice on
criteria for choosing a specific platform.
Relatively up-to-date lists of vendors can
always be found on the internet.

Conclusions

70 Machine learning platforms Choosing	machine	learning	platforms	and	filling	the	gaps

Footnotes

1 https://www.gartner.com/reviews/customers-choice/
 data-science-machine-learning-platforms/May-2019

2 https://en.wikipedia.org/wiki/Platform_as_a_service

3 https://en.wikipedia.org/wiki/Cloud_
 computing#Service_models

4 https://en.wikipedia.org/wiki/Computing_platform

5 http://aiplaybook.a16z.com/docs/intro/survey-
 parameters

6 https://www.welcome.ai/sift

7 https://medium.com/mmc-writes/introducing-the-
 state-of-ai-2019-divergence-14d69cb3b16c

8 http://www.bradfordcross.com/blog/2017/6/13/
 vertical-ai-startups-solving-industry-specific-problems-
 by-combining-ai-and-subject-matter-expertise

9 https://www.predictionmachines.ai

10 http://www.json.org/

11 https://curl.haxx.se

12 https://indico.io

13 https://kairos.io

14 https://www.clarifai.com/

15 https://blog.clarifai.com/introducing-clarifais-first-end-
 to-end-solution-for-moderation (accessed April 2019)

16 https://cloud.google.com/natural-language/

17 https://cloud.google.com/vision/docs/

18 https://www.microsoft.com/cognitive-services

19 https://landing.ai/ai-solutions/

20 ibid [5].

21 https://sift.com/developers/docs/

22 https://infer.com/

23 https://www.salesforce.com/products/
 einstein/features/

24 https://metamind.readme.io/docs/
 intro-to-einstein-language

25 https://cloud.google.com/solutions/contact-center/

26 https://www.answeriq.com/home

27 https://cloud.google.com/solutions/talent-solution/

28 https://dialogflow.com/

29 https://cloud.google.com/recommendations/

30 https://www.clarifai.com/

31 https://community.clarifai.com/t/our-new-user-
 interface-is-now-live/1252 (accessed Apr 2019)

32 https://clarifai.com/developer/guide/
 (accessed Apr 2019)

33 https://clarifai.com/developer/guide/
 (accessed Apr 2019)

34 https://aws.amazon.com/comprehend/

35 https://cloud.google.com/natural-language/

	 Choosing	machine	learning	platforms	and	filling	the	gaps Machine learning platforms 71

36 https://monkeylearn.com

37 https://lateral.io/tech

38 https://aws.amazon.com/rekognition/

39 https://cloud.google.com/vision/

40 https://cloud.google.com/data-labeling/docs/

41 https://www.figure-eight.com

42 https://landing.ai/ai-solutions/ (accessed Apr 2019)

43 https://indico.io/blog/docs/indico-api/
 text-analysis/text-features/

44 https://indico.io/blog/docs/indico-api/
 image-analysis/image-features/

45 https://bigml.com

46 https://cloud.google.com/automl-tables/

47 https://cloud.google.com/inference/

48 https://www.craft.ai

49 https://azure.microsoft.com/en-us/services/
 machine-learning-studio/

50 https://lobe.ai

51 https://lobe.ai/examples (accessed Apr 2019)

52 https://lobe.ai (accessed Apr 2019)

53 https://www.datarobot.com

54 https://rapidminer.com

55 https://www.dataiku.com

56 https://www.dataiku.com/learn/guide/spark/
 mllib/using-mllib-in-ui.html (accessed Apr 2019)

57 https://www.dataiku.com/learn/guide/spark/
 mllib/using-mllib-in-ui.html (accessed Apr 2019)

58 https://doc.dataiku.com/dss/latest/machine-learning/
 auto-ml.html (accessed Apr 2019)

59 https://www.datarobot.com/wiki/prediction-
 explanations/ (accessed Apr 2019)

60 https://www.datarobot.com/wiki/classification/
 (accessed Apr 2019)

61 https://www.datarobot.com/product/time-series/
 (accessed Apr 2019)

62 http://docs.h2o.ai/driverless-ai/latest-stable/docs/
 userguide/examples/credit_card_default.
 html?highlight=api

63 https://jupyter.org

64 https://www.tensorflow.org/guide/
 summaries_and_tensorboard

65 http://floydhub.com

66 https://faculty.ai

67 https://blog.floydhub.com/workspaces/
 (accessed Apr 2019)

68 https://blog.floydhub.com/advanced-features/
 (accessed Apr 2019)

69 https://docs.floydhub.com/guides/jobs/metrics/

Footnotes

72 Machine Learning Platforms Footnotes

 (accessed Apr 2019)

70 https://cloud.google.com/ai-platform-notebooks/

71 https://cloud.google.com/deep-learning-vm/

72 https://cloud.google.com/tpu/

73 https://aws.amazon.com/sagemaker/

74 https://databricks.com/product/
 unified-analytics-platform

75 https://databricks.com/blog/2018/06/05/
 introducing-mlflow-an-open-source-machine-learning-
 platform.html (accessed Apr 2019)

76 https://www.trifacta.com

77 https://cloud.google.com/dataprep/

78 https://cloud.google.com/dataflow/

79 https://cloud.google.com/bigquery/

80 https://cloud.google.com/ml-engine/docs/
 tensorflow/training-overview

81 https://cloud.google.com/ai-platform/
 (accessed Apr 2019)

82 https://kubernetes.io

83 http://kubeflow.org

84 https://www.seldon.io/open-source/

85 https://cloud.google.com/kubernetes-engine/

86 https://azure.microsoft.com/services/
 kubernetes-service/

87 https://aws.amazon.com/eks/

88 https://aws.amazon.com/fargate/

89 https://aws.amazon.com/ecs/

90 https://airflow.apache.org

91 https://blog.algorithmia.com/how-to-version-control-
 your-production-machine-learning-models/

92 https://www.mlflow.org/docs/latest/python_api/
 mlflow.pyfunc.html#pyfunc-filesystem-format

93 https://aws.amazon.com/sagemaker/neo/

94 https://aws.amazon.com/greengrass/ml/

95 https://azure.microsoft.com/en-us/services/iot-edge/

96 https://en.wikipedia.org/wiki/
 Predictive_Model_Markup_Language

97 https://en.wikipedia.org/wiki/
 Portable_Format_for_Analytics

98 https://onnx.ai/

99 https://gitlab.com/juliensimon/dlnotebooks/blob/
 master/sagemaker/05-Image-classification-two-
 models.ipynb

100 https://aws.amazon.com/cloudwatch/

101 https://docs.aws.amazon.com/sagemaker/latest/dg/
 API_UpdateEndpointWeightsAndCapacities.html

102 https://medium.com/@julsimon/mastering-the-
 mystical-art-of-model-deployment-c0cafe011175
 (accessed Apr 2019)

Footnotes

 Footnotes Machine Learning Platforms 73

Footnotes

103 https://algorithmia.com

104 https://algorithmia.com/admin/metrics
 (accessed Apr 2019)

105 https://aws.amazon.com/lambda/

106 https://cloud.google.com/functions/

107 https://cloud.google.com/run/

108 https://knative.dev/

109 https://www.seldon.io/

110 https://www.youtube.com/watch?v=jYZ8nlPrMFM

111 https://indico.io/blog/docs/indico-api/
 custom-collections/explaining-predictions/

112 https://www.tensorflow.org/tfx/guide/serving

113 https://github.com/tensorflow/privacy

114 https://www.tensorflow.org/federated

115 https://github.com/OpenMined/PySyft

116 https://scikit-learn.org/stable/modules/generated/
 sklearn.linear_model.SGDClassifier.html#sklearn.
 linear_model.SGDClassifier.partial_fit

117 http://www.machinelearningcanvas.com

118 https://landing.ai/ai-transformation-playbook/

119 http://proceedings.mlr.press/v67/li17a/li17a.pdf

120 https://arxiv.org/abs/1905.06876

74 Machine Learning Platforms About

DIGITAL CATAPULT
Digital Catapult is the UK’s leading advanced digital technology innovation centre. It drives the
early adoption of digital technologies: to make UK businesses more competitive and productive,
and to grow the country’s economy. Its AI and machine learning stream consists of a team of
applied technology specialists, and the provision of facilities and programmes that support
innovation and facilitate collaboration across large organisations, startups and academia.

PAPIS
PAPIs is the first series of international conferences dedicated to real-world machine learning
applications and APIs. It provides a venue for leading ML practitioners to share their
experiences in building ML systems, to discuss challenges, and to present innovative tools,
frameworks and platforms that are taking the industry further. Previous editions took place
in São Paulo, Boston, Sydney, Barcelona, Paris, Valencia, and London.

AUTHOR
Louis Dorard is the author of the Machine Learning Canvas, general chair of PAPIs, and lead
instructor at Microsoft AI School. As an independent consultant and ML coach, Louis helps
corporations and startups integrate ML into their products. He has held workshops at major
companies such as Airbus, Amazon, Deloitte, EDF, Intel, Konica Minolta. Previously he taught
ML at UCL School of Management. Louis holds a PhD in ML from University College London.

You can get in touch with him at www.louisdorard.com.

About

	 Choosing	machine	learning	platforms	and	filling	the	gaps Machine learning platforms 75

76 Machine learning platforms Choosing	machine	learning	platforms	and	filling	the	gaps

M
achine Learning P

latform
s

Machine
Learning
Platforms
Using, extending and creating
platforms to accelerate machine
learning efforts and generate growth

Research report 2019

Digital Catapult
101 Euston Road
London NW1 2RA

0300 1233 101

www.digicatapult.org.uk

www.papis.io

D
igital C

atapult

